Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2208047120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795755

RESUMO

Like other secreted peptides, nascent parathyroid hormone (PTH) is synthesized with a pre- and a pro-sequence (25 and 6 amino acids, respectively). These precursor segments are sequentially removed in parathyroid cells before packaging into secretory granules. Three patients from two unrelated families who presented during infancy with symptomatic hypocalcemia were found to have a homozygous serine (S) to proline (P) change affecting the first amino acid of the mature PTH. Unexpectedly, biological activity of synthetic [P1]PTH(1-34) was indistinguishable from that of unmodified [S1]PTH(1-34). However, in contrast to conditioned medium from COS-7 cells expressing prepro[S1]PTH(1-84), medium from cells expressing prepro[P1]PTH(1-84) failed to stimulate cAMP production despite similar PTH levels when measured by an intact assay that detects PTH(1-84) and large amino-terminally truncated fragments thereof. Analysis of the secreted, but inactive PTH variant led to the identification of pro[P1]PTH(-6 to +84). Synthetic pro[P1]PTH(-6 to +34) and pro[S1]PTH(-6 to +34) had much less bioactivity than the corresponding PTH(1-34) analogs. Unlike pro[S1]PTH(-6 to +34), pro[P1]PTH(-6 to +34) was resistant to cleavage by furin suggesting that the amino acid variant impairs preproPTH processing. Consistent with this conclusion, plasma of patients with the homozygous P1 mutation had elevated proPTH levels, as determined with an in-house assay specific for pro[P1]PTH(-6 to +84). In fact, a large fraction of PTH detected by the commercial intact assay represented the secreted pro[P1]PTH. In contrast, two commercial biointact assays that use antibodies directed against the first few amino acid residues of PTH(1-84) for capture or detection failed to detect pro[P1]PTH.


Assuntos
Hipocalcemia , Humanos , Hipocalcemia/genética , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Mutação , Prolina/genética , Aminoácidos/genética
2.
Proc Natl Acad Sci U S A ; 110(15): 5864-9, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23533279

RESUMO

Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting "knock-in" mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1-34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it.


Assuntos
Osso e Ossos/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/análogos & derivados , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Animais , Cálcio/sangue , Cálcio/urina , AMP Cíclico/sangue , AMP Cíclico/urina , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Homeostase , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatos/sangue , Fosfatos/urina , Fosforilação , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
3.
J Clin Densitom ; 16(1): 4-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23374734

RESUMO

Research on parathyroid hormone (PTH) over the preceding century was an exciting but sometimes confusing tale, with steady advances yet long periods of stalled progress, angry debates, and missed opportunities. There were sometimes fierce debates about the function of the parathyroids. These were finally resolved by 1925 when a potent biologic extract useful for testing in animals was finally made by Collip, and the role of PTH in calcium metabolism was established unequivocally. In the decades that followed, the pathophysiology of hormone excess (severe bone loss and other symptoms) was elucidated. Diagnosis can now be made with high reliability, even in the absence of clinical manifestation. The modern clinical profile of asymptomatic hyperparathyroidism is best described as a disorder in which there are neither signs nor symptoms traditionally associated with hypercalcemia or PTH excess.


Assuntos
Endocrinologia/história , Hiperparatireoidismo/fisiopatologia , Hormônio Paratireóideo/fisiologia , História do Século XX , Humanos , Hiperparatireoidismo/diagnóstico , Glândulas Paratireoides/fisiopatologia , Hormônio Paratireóideo/sangue
4.
J Biol Chem ; 286(2): 1618-26, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047792

RESUMO

The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hormônio Paratireóideo/metabolismo , Pseudo-Hipoparatireoidismo/metabolismo , Transdução de Sinais/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Células COS , Bovinos , Chlorocebus aethiops , Regulação para Baixo/fisiologia , Humanos , Técnicas In Vitro , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gambás , Osteoblastos/citologia , Osteoblastos/metabolismo , Hormônio Paratireóideo/análogos & derivados , Hormônio Paratireóideo/genética , Fósforo/sangue , Ratos , Sódio/metabolismo
5.
J Clin Densitom ; 15(1): 1-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22284629

RESUMO

The 11th Santa Fe Bone Symposium was held in Santa Fe, NM, USA, on August 6-7, 2010. This annual event addresses the clinical relevance of recent scientific advances in the fields of osteoporosis and metabolic bone disease. The symposium format included plenary presentations, oral abstracts, and interactive panel discussions, with participation of clinicians, researchers, and bone densitometry technologists. Among the many topics included in the symposium were new developments in nutritional therapy for osteoporosis, parathyroid hormone for the assessment and treatment of skeletal disease, osteoporosis in men, new and emerging concepts in osteoporosis therapy, report on the 2010 International Society for Clinical Densitometry (ISCD)-International Osteoporosis Foundation FRAX Initiative and the ISCD Position Development Conference, balancing benefits and risks of bisphosphonate therapy, and an advanced bone densitometry workshop for clinicians and technologists.


Assuntos
Absorciometria de Fóton , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/terapia , Fraturas Ósseas/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Osteoporose/terapia , Feminino , Fraturas Ósseas/etiologia , Humanos , Masculino , New Mexico , Osteoporose/complicações
6.
J Bone Miner Res ; 37(12): 2568-2585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054621

RESUMO

This clinical practice guideline addresses the prevention, diagnosis, and management of hypoparathyroidism (HypoPT) and provides evidence-based recommendations. The HypoPT task forces included four teams with a total of 50 international experts including representatives from the sponsoring societies. A methodologist (GG) and his team supported the taskforces and conducted the systematic reviews. A formal process following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology and the systematic reviews provided the structure for seven of the guideline recommendations. The task force used a less structured approach based on narrative reviews for 20 non-GRADEd recommendations. Clinicians may consider postsurgical HypoPT permanent if it persists for >12 months after surgery. To predict which patients will not develop permanent postsurgical HypoPT, we recommend evaluating serum PTH within 12 to 24 hours post total thyroidectomy (strong recommendation, moderate quality evidence). PTH > 10 pg/mL (1.05 pmol/L) virtually excludes long-term HypoPT. In individuals with nonsurgical HypoPT, genetic testing may be helpful in the presence of a positive family history of nonsurgical HypoPT, in the presence of syndromic features, or in individuals younger than 40 years. HypoPT can be associated with complications, including nephrocalcinosis, nephrolithiasis, renal insufficiency, cataracts, seizures, cardiac arrhythmias, ischemic heart disease, depression, and an increased risk of infection. Minimizing complications of HypoPT requires careful evaluation and close monitoring of laboratory indices. In patients with chronic HypoPT, the panel suggests conventional therapy with calcium and active vitamin D metabolites as first-line therapy (weak recommendation, low-quality evidence). When conventional therapy is deemed unsatisfactory, the panel considers the use of PTH. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipoparatireoidismo , Nefrocalcinose , Humanos , Hipoparatireoidismo/tratamento farmacológico , Osso e Ossos , Cálcio da Dieta
7.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460406

RESUMO

Rodent models are commonly used to evaluate parathyroid hormone (PTH) and PTH-related protein (PTHrP) ligands and analogues for their pharmacologic activities and potential therapeutic utility toward diseases of bone and mineral ion metabolism. Divergence, however, in the amino acid sequences of rodent and human PTH receptors (rat and mouse PTH1Rs are 91% identical to the human PTH1R) can lead to differences in receptor-binding and signaling potencies for such ligands when assessed on rodent vs human PTH1Rs, as shown by cell-based assays in vitro. This introduces an element of uncertainty in the accuracy of rodent models for performing such preclinical evaluations. To overcome this potential uncertainty, we used a homologous recombination-based knockin (KI) approach to generate a mouse (in-host strain C57Bl/6N) in which complementary DNA encoding the human PTH1R replaces a segment (exon 4) of the murine PTH1R gene so that the human and not the mouse PTH1R protein is expressed. Expression is directed by the endogenous mouse promoter and hence occurs in all biologically relevant cells and tissues and at appropriate levels. The resulting homozygous hPTH1R-KI (humanized) mice were healthy over at least 10 generations and showed functional responses to injected PTH analog peptides that are consistent with a fully functional human PTH1R in target bone and kidney cells. The initial evaluation of these mice and their potential utility for predicting behavior of PTH analogues in humans is reported here.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Sequência de Aminoácidos , Animais , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores de Hormônios Paratireóideos/genética , Receptores de Hormônios Paratireóideos/metabolismo , Transdução de Sinais
8.
J Bone Miner Res ; 37(11): 2391-2403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054638

RESUMO

Since the last international guidelines were published in 2014 on the evaluation and management of primary hyperparathyroidism (PHPT), new information has become available with regard to evaluation, diagnosis, epidemiology, genetics, classical and nonclassical manifestations, surgical and nonsurgical approaches, and natural history. To provide the most current summary of these developments, an international group, consisting of over 50 experts in these various aspects of PHPT, was convened. This paper provides the results of the task force that was assigned to review the information on the management of PHPT. For this task force on the management of PHPT, two questions were the subject of systematic reviews using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) methodology. The full report addressing surgical and nonsurgical management of PHPT, utilizing the GRADE methodology, is published separately in this series. In this report, we summarize the results of that methodological review and expand them to encompass a much larger body of new knowledge that did not specifically fit the criteria of the GRADE methodology. Together, both the systematic and narrative reviews of the literature, summarized in this paper, give the most complete information available to date. A panel of experts then considered the last set of international guidelines in light of the newer data and assessed the need for their revision. This report provides the evidentiary background to the guidelines report. In that report, evidence from all task forces is synthesized into a summary statement and revised guidelines for the evaluation and management of PHPT. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hiperparatireoidismo Primário , Humanos , Hiperparatireoidismo Primário/terapia , Revisões Sistemáticas como Assunto , Hormônio Paratireóideo
9.
J Bone Miner Res ; 37(11): 2293-2314, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36245251

RESUMO

The last international guidelines on the evaluation and management of primary hyperparathyroidism (PHPT) were published in 2014. Research since that time has led to new insights into epidemiology, pathophysiology, diagnosis, measurements, genetics, outcomes, presentations, new imaging modalities, target and other organ systems, pregnancy, evaluation, and management. Advances in all these areas are demonstrated by the reference list in which the majority of listings were published after the last set of guidelines. It was thus, timely to convene an international group of over 50 experts to review these advances in our knowledge. Four Task Forces considered: 1. Epidemiology, Pathophysiology, and Genetics; 2. Classical and Nonclassical Features; 3. Surgical Aspects; and 4. Management. For Task Force 4 on the Management of PHPT, Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology addressed surgical management of asymptomatic PHPT and non-surgical medical management of PHPT. The findings of this systematic review that applied GRADE methods to randomized trials are published as part of this series. Task Force 4 also reviewed a much larger body of new knowledge from observations studies that did not specifically fit the criteria of GRADE methodology. The full reports of these 4 Task Forces immediately follow this summary statement. Distilling the essence of all deliberations of all Task Force reports and Methodological reviews, we offer, in this summary statement, evidence-based recommendations and guidelines for the evaluation and management of PHPT. Different from the conclusions of the last workshop, these deliberations have led to revisions of renal guidelines and more evidence for the other recommendations. The accompanying papers present an in-depth discussion of topics summarized in this report. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hiperparatireoidismo Primário , Humanos , Hiperparatireoidismo Primário/diagnóstico , Hiperparatireoidismo Primário/terapia , Hiperparatireoidismo Primário/complicações
10.
Nat Chem Biol ; 5(10): 734-42, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19701185

RESUMO

Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP(1-36) action was restricted to the cell surface, whereas PTH(1-34) had moved to internalized compartments where it remained associated with the PTHR and Galpha(s), potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised.


Assuntos
AMP Cíclico/biossíntese , Endocitose/fisiologia , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Transdução de Sinais/fisiologia , Animais , Reabsorção Óssea/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligantes , Camundongos , Microscopia Confocal , Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo , Conformação Proteica , Transporte Proteico , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
11.
Proc Natl Acad Sci U S A ; 105(43): 16525-30, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18946036

RESUMO

The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1-34), but not PTH-related protein, PTHrP(1-36), or M-PTH(1-14) (M = Ala/Aib(1),Aib(3),Gln(10),Har(11),Ala(12),Trp(14),Arg(19)), binds to the PTHR in a largely GTPgammaS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R(0)), distinct from the GTPgammaS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1-34), M-PTH(1-28) and M-PTH(1-34) bound to R(0) with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1-34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1-34). Thus, the putative R(0) PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R(0), versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands.


Assuntos
Peptídeos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Animais , Osso e Ossos/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Rim/fisiologia , Ligantes , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Fatores de Tempo
12.
JBMR Plus ; 4(7): e10367, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32666018

RESUMO

Prolonged signaling at the parathyroid hormone receptor 1 (PTHR1) correlates with the capacity of a ligand to bind to a G protein-independent receptor conformation (R0). As long-acting PTH (LA-PTH) ligands hold interest as potential treatments for hypoparathyroidism (HP), we explored the structural basis in the ligand for stable R0 binding and prolonged cAMP signaling. A series of PTH/PTHrP hybrid analogs were synthesized and tested for actions in vitro and in vivo. Of the series, [Ala1,3,12,Gln10,Arg11,Trp14]-PTH(1-14)/PTHrP(15-36) (M-PTH/PTHrP) bound with high affinity to R0, induced prolonged cAMP responses in UMR106 rat osteoblast-derived cells, and induced the most prolonged increases in serum calcium (sCa) in normal rats. Daily s.c. injection of M-PTH/PTHrP into thyroparathyroidectomized (TPTX) rats, a model of HP, normalized sCa without raising urine Ca. In contrast, oral alfacalcidol, a widely used treatment for HP, normalized sCa, but induced frank hypercalciuria. M-PTH/PTHrP exhibited low solubility in aqueous solutions of neutral pH; however, replacement of Leu18, Phe22, and His26 with the less hydrophobic residues, Ala, Ala, and Lys, at those respective positions markedly improved solubility while maintaining bioactivity. Indeed, we recently showed that the resultant analog [Ala18,22,Lys26]-M-PTH/PTHrP or LA-PTH, effectively normalizes sCa in TPTX rats and mediates prolonged actions in monkeys. These studies provide useful information for optimizing PTH and PTHrP ligand analogs for therapeutic development. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

13.
J Bone Miner Res ; 35(3): 540-549, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693237

RESUMO

Jansen's metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand-independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell-based assays, we found that certain N-terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11 ,dTrp12 ,Trp23 ,Tyr36 ]-PTHrP(7-36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1-H223R allele of JMC in osteoblastic cells via the collagen-1α1 promoter (C1HR mice). We observed that after 2 weeks of twice-daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof-of-concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.


Assuntos
Nanismo , Osteocondrodisplasias , Animais , Fator de Crescimento de Fibroblastos 23 , Ligantes , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/genética , Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo/genética
14.
J Clin Endocrinol Metab ; 94(2): 335-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19193908

RESUMO

OBJECTIVE: Asymptomatic primary hyperparathyroidism (PHPT) is a common clinical problem. The purpose of this report is to guide the use of diagnostics and management for this condition in clinical practice. PARTICIPANTS: Interested professional societies selected representatives for the consensus committee and provided funding for a one-day meeting. A subgroup of this committee set the program and developed key questions for review. Consensus was established at a closed meeting that followed and at subsequent discussions. EVIDENCE: Each question was addressed by a relevant literature search (on PubMed), and the data were presented for discussion at the group meeting. CONSENSUS PROCESS: Consensus was achieved by a group meeting. Statements were prepared and reviewed by all authors who represented the Planning Committee and the participating professional societies.


Assuntos
Guias como Assunto , Hiperparatireoidismo Primário/terapia , Consenso , Humanos , Hiperparatireoidismo Primário/diagnóstico , Monitorização Fisiológica/métodos , Paratireoidectomia/métodos
15.
Mol Endocrinol ; 22(1): 156-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17872377

RESUMO

PTH and PTHrP use the same G protein-coupled receptor, the PTH/PTHrP receptor (PTHR), to mediate their distinct biological actions. The extent to which the mechanisms by which the two ligands bind to the PTHR differ is unclear. We examined this question using several pharmacological and biophysical approaches. Kinetic dissociation and equilibrium binding assays revealed that the binding of [(125)I]PTHrP(1-36) to the PTHR was more sensitive to GTPgammaS (added to functionally uncouple PTHR-G protein complexes) than was the binding of [(125)I]PTH(1-34) ( approximately 75% maximal inhibition vs. approximately 20%). Fluorescence resonance energy transfer-based kinetic analyses revealed that PTHrP(1-36) bound to the PTHR more slowly and dissociated from it more rapidly than did PTH(1-34). The cAMP signaling response capacity of PTHrP(1-36) in cells decayed more rapidly than did that of PTH(1-34) (t(1/2) = approximately 1 vs. approximately 2 h). Divergent residue 5 in the ligand, Ile in PTH and His in PTHrP, was identified as a key determinant of the altered receptor-interaction responses exhibited by the two peptides. We conclude that whereas PTH and PTHrP bind similarly to the G protein-coupled PTHR conformation (RG), PTH has a greater capacity to bind to the G protein-uncoupled conformation (R(0)) and, hence, can produce cumulatively greater signaling responses (via R(0)-->RG isomerization) than can PTHrP. Such conformational selectivity may relate to the distinct modes by which PTH and PTHrP act biologically, endocrine vs. paracrine, and may help explain reported differences in the effects that the ligands have on calcium and bone metabolism when administered to humans.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/metabolismo , Receptores de Hormônios Paratireóideos/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/genética , Ligação Proteica , Conformação Proteica , Receptores de Hormônios Paratireóideos/química , Receptores de Hormônios Paratireóideos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
17.
J Bone Miner Res ; 38(6): 809-811, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37055026
18.
Ann N Y Acad Sci ; 1117: 196-208, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18056044

RESUMO

With the advent of advances in chemical and molecular biology, the structure of parathyroid hormone (PTH); the related protein, parathyroid-related protein (PTHrP); and their principal receptor (PTH/PTHrP receptor [PTHR1]) were established over recent decades. Tests with purified hormonal peptide in humans led to the surprising, even paradoxical, finding that PTH can be used pharmacologically to build bone, providing a dramatic therapeutic impact on osteoporosis. These developments plus recent insights into previously unappreciated ligand-receptor conformations that cause prolonged biological activation have stimulated the field of calcium and bone biology and posed new questions about the role of PTH and PTHrP as well as possible new directions in the therapy of osteoporosis and calcium-deficit states.


Assuntos
Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Sequência de Aminoácidos , Animais , Biologia/tendências , Bovinos , Evolução Molecular , Humanos , Ligantes , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Osteoporose/terapia , Glândulas Paratireoides/metabolismo
19.
Mol Endocrinol ; 20(4): 931-43, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16339275

RESUMO

Mechanisms of ligand binding to the PTH/PTHrP receptor (PTHR) were explored using PTH fragment analogs as radioligands in binding assays. In particular, the modified amino-terminal fragment analog, (125)I-[Aib(1,3),Nle8,Gln10,homoarginine11,Ala12,Trp14,Tyr15]rPTH(1-15)NH2, (125)I-[Aib(1,3),M]PTH(1-15), was used as a radioligand that we hypothesized to bind solely to the juxtamembrane (J) portion of the PTHR containing the extracellular loops and transmembrane helices. We also employed (125)I-PTH(1-34) as a radioligand that binds to both the amino-terminal extracellular (N) and J domains of the PTHR. Binding was examined in membranes derived from cells expressing either wild-type or mutant PTHRs. We found that the binding of (125)I-[Aib(1,3),M]PTH(1-15) to the wild-type PTHR was strongly (approximately 90%) inhibited by guanosine 5'-O-(3-thio)triphosphate (GTPgammaS), whereas the binding of (125)I-PTH(1-34) was only mildly (approximately 25%) inhibited by GTPgammaS. Of these two radioligands, only (125)I-[Aib(1,3),M]PTH(1-15) bound to PTHR-delNt, which lacks most of the receptor's N domain, and again this binding was strongly inhibited by GTPgammaS. Binding of (125)I-[Aib(1,3),M]PTH(1-15) to the constitutively active receptor, PTHR-H223R, was only mildly (approximately 20%) inhibited by GTPgammaS, as was the binding of (125)I-PTH(1-34). In membranes prepared from cells lacking Galpha(S) via knockout mutation of Gnas, no binding of (125)I-[Aib(1,3),M]PTH(1-15) was observed, but binding of (125)I-[Aib(1,3),M]PTH(1-15) was recovered by virally transducing the cells to heterologously express Galpha(S). (125)I-PTH(1-34) bound to the membranes with or without Galpha(S). The overall findings confirm the hypothesis that (125)I-[Aib(1,3),M]PTH(1-15) binds solely to the J domain of the PTHR. They further show that this binding is strongly dependent on coupling of the receptor to Galpha(S)-containing heterotrimeric G proteins, whereas the binding of (125)I-PTH(1-34) can occur in the absence of such coupling. Thus, (125)I-[Aib(1,3),M]PTH(1-15) appears to function as a selective probe of Galpha(S)-coupled, active-state PTHR conformations.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Cinética , Células LLC-PK1 , Ligantes , Hormônio Paratireóideo/metabolismo , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Ensaio Radioligante , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
20.
J Bone Miner Res ; 32(1): 86-98, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27428040

RESUMO

Polyethylene glycol (PEG) addition can prolong the pharmacokinetic and pharmacodynamic actions of a bioactive peptide in vivo, in part by impeding rates of glomerular filtration. For parathyroid hormone (PTH) peptides, pegylation could help in exploring the actions of the hormone in the kidney; e.g., in dissecting the relative roles that filtered versus blood-borne PTH play in regulating phosphate transport. It could also lead to potential alternate forms of treatment for hypoparathyroidism. We thus synthesized the fluorescent pegylated PTH derivative [Lys13 (tetramethylrhodamine {TMR}), Cys35 (PEG-20,000 Da)]PTH(1-35) (PEG-PTHTMR ) and its non-pegylated counterpart [Lys13 (TMR), Cys35 ]PTH(1-35) (PTHTMR ) and assessed their properties in cells and in mice. In PTHR1-expressing HEK-293 cells, PEG-PTHTMR and PTHTMR exhibited similar potencies for inducing cAMP signaling, whereas when injected into mice, the pegylated analog persisted much longer in the circulation (>24 hours versus ∼ 1 hour) and induced markedly more prolonged calcemic and phosphaturic responses than did the non-pegylated control. Fluorescence microscopy analysis of kidney sections obtained from the injected mice revealed much less PEG-PTHTMR than PTHTMR on the luminal brush-border surfaces of renal proximal tubule cells (PTCs), on which PTH regulates phosphate transporter function, whereas immunostained phosphorylated PKA substrate, a marker of cAMP signaling, was increased to similar extents for the two ligands and for each, was localized to the basolateral portion of the PTCs. Pegylation of a bioactive PTH peptide thus led to prolonged pharmacokinetic/pharmacodynamic properties in vivo, as well as to new in vivo data that support a prominent role for PTH action at basolateral surfaces of renal proximal tubule cells. © 2016 American Society for Bone and Mineral Research.


Assuntos
Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/farmacocinética , Polietilenoglicóis/química , Animais , Calcitriol/sangue , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Fluorescência , Células HEK293 , Humanos , Rim/enzimologia , Rim/patologia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/urina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Rodaminas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa