Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 119-132, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141607

RESUMO

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.


Assuntos
Megalencefalia , Proteínas Proto-Oncogênicas c-myc , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Dimerização , Megalencefalia/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
J Med Genet ; 61(4): 347-355, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37979963

RESUMO

BACKGROUND: Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS: Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS: Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION: These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.


Assuntos
Amelogênese Imperfeita , Colágenos não Fibrilares , Humanos , Colágenos não Fibrilares/genética , Colágenos não Fibrilares/metabolismo , Autoantígenos/genética , Amelogênese Imperfeita/genética , Heterozigoto , Fenótipo , Mutação/genética
3.
J Med Genet ; 61(7): 689-698, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38458752

RESUMO

BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.


Assuntos
Amelogênese Imperfeita , Deficiência Intelectual , Linhagem , Humanos , Animais , Masculino , Feminino , Camundongos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/genética , Alelos , Criança , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Adulto , Mutação/genética , Adolescente , Pré-Escolar , Fenótipo
4.
Blood ; 140(13): 1496-1506, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35793467

RESUMO

Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.


Assuntos
Nucleotídeos , Enzimas Ativadoras de Ubiquitina , Códon de Iniciação , Humanos , Mutação , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitinação
5.
Photochem Photobiol Sci ; 23(6): 1067-1075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625651

RESUMO

Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antracenos , Neoplasias Colorretais , Febuxostat , Proteínas de Neoplasias , Perileno , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antracenos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perileno/análogos & derivados , Perileno/farmacologia , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Células HEK293 , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Antineoplásicos/farmacologia , Antineoplásicos/química
6.
Genet Med ; 25(7): 100838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057673

RESUMO

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Ophthalmology ; 130(1): 68-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934205

RESUMO

PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.


Assuntos
Degeneração Macular , Humanos , Hibridização Genômica Comparativa , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Linhagem , Fenótipo , Transativadores/genética , Proteínas de Homeodomínio/genética
8.
J Med Genet ; 59(8): 737-747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34716235

RESUMO

BACKGROUND: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS: Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS: We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION: These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Ciliopatias/patologia , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , Fenótipo , Medicina Estatal
9.
Hum Mol Genet ; 29(9): 1417-1425, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167558

RESUMO

Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Ligação a DNA/genética , Proteínas do Esmalte Dentário/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Ameloblastos/metabolismo , Ameloblastos/patologia , Amelogênese Imperfeita/patologia , Proteínas Relacionadas à Autofagia/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/patologia , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Regiões Promotoras Genéticas/genética , Dente/crescimento & desenvolvimento , Dente/patologia , Sequenciamento do Exoma
10.
J Clin Immunol ; 42(1): 158-170, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34671876

RESUMO

The NLRP3 inflammasome is a vital mediator of innate immune responses. There are numerous NLRP3 mutations that cause NLRP3-associated autoinflammatory diseases (NLRP3-AIDs), mostly in or around the NACHT domain. Here, we present a patient with a rare leucine-rich repeat (LRR) domain mutation, p.Arg920Gln (p.R920Q), associated with an atypical NLRP3-AID with recurrent episodes of sore throat and extensive oropharyngeal ulceration. Unlike previously reported patients, who responded well to anakinra, her oral ulcers did not significantly improve until the PDE4 inhibitor, apremilast, was added to her treatment regimen. Here, we show that this mutation enhances interactions between NLRP3 and its endogenous inhibitor, NIMA-related kinase 7 (NEK7), by affecting charge complementarity between the two proteins. We also demonstrate that additional inflammatory mediators, including the NF-кB and IL-17 signalling pathways and IL-8 chemokine, are upregulated in the patient's macrophages and may be directly involved in disease pathogenesis. These results highlight the role of the NLRP3 LRR domain in NLRP3-AIDs and demonstrate that the p.R920Q mutation can cause diverse phenotypes between families.


Assuntos
Doenças Hereditárias Autoinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Feminino , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , NF-kappa B/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
11.
Blood ; 136(9): 1055-1066, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32518946

RESUMO

Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.


Assuntos
Proteínas de Ligação a DNA/deficiência , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Transtornos Linfoproliferativos/genética , Proteínas Proto-Oncogênicas/deficiência , Imunodeficiência Combinada Severa/genética , Aloenxertos , Apoptose , Subpopulações de Linfócitos B/patologia , Técnicas de Reprogramação Celular , Códon sem Sentido , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Dioxigenases , Evolução Fatal , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/patologia , Masculino , Mutação de Sentido Incorreto , Neoplasias Primárias Múltiplas/genética , Linhagem , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Imunodeficiência Combinada Severa/patologia , Subpopulações de Linfócitos T/patologia , Sequenciamento do Exoma
12.
J Med Genet ; 58(5): 334-341, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32571899

RESUMO

BACKGROUND: The HERC2 gene encodes a 527 kDa E3 ubiquitin protein ligase that has key roles in cell cycle regulation, spindle formation during mitosis, mitochondrial functions and DNA damage responses. It has essential roles during embryonic development, particularly for neuronal and muscular functions. To date, missense mutations in HERC2 have been associated with an autosomal recessive neurodevelopmental disorder with some phenotypical similarities to Angelman syndrome, and a homozygous deletion spanning HERC2 and OCA2 causing a more severe neurodevelopmental phenotype. METHODS AND RESULTS: We ascertained a consanguineous family with a presumed autosomal recessive severe neurodevelopmental disorder that leads to paediatric lethality. In affected individuals, we identified a homozygous HERC2 frameshift variant that results in a premature stop codon and complete loss of HERC2 protein. Functional characterisation of this variant in fibroblasts, from one living affected individual, revealed impaired mitochondrial network and function as well as disrupted levels of known interacting proteins such as XPA. CONCLUSION: This study extends the genotype-phenotype correlation for HERC2 variants to include a distinct lethal neurodevelopmental disorder, highlighting the importance of further characterisation for HERC2-related disorders.


Assuntos
Genes Letais , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Células Cultivadas , Criança , Mortalidade da Criança , Consanguinidade , Feminino , Estudos de Associação Genética , Humanos , Masculino , Linhagem , Adulto Jovem
13.
Hum Mutat ; 42(5): 567-576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600052

RESUMO

Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.


Assuntos
Amelogênese Imperfeita , Metaloproteinase 20 da Matriz , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Efeito Fundador , Homozigoto , Humanos , Metaloproteinase 20 da Matriz/genética , Linhagem
14.
Hum Mutat ; 42(2): 164-176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252155

RESUMO

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Assuntos
Oftalmopatias Hereditárias , Receptor Quinase 1 Acoplada a Proteína G , Cegueira Noturna , Oftalmopatias Hereditárias/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Humanos , Cegueira Noturna/genética
15.
Am J Hum Genet ; 103(5): 727-739, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388400

RESUMO

Primary defects in motile cilia result in dysfunction of the apparatus responsible for generating fluid flows. Defects in these mechanisms underlie disorders characterized by poor mucus clearance, resulting in susceptibility to chronic recurrent respiratory infections, often associated with infertility; laterality defects occur in about 50% of such individuals. Here we report biallelic variants in LRRC56 (known as oda8 in Chlamydomonas) identified in three unrelated families. The phenotype comprises laterality defects and chronic pulmonary infections. High-speed video microscopy of cultured epithelial cells from an affected individual showed severely dyskinetic cilia but no obvious ultra-structural abnormalities on routine transmission electron microscopy (TEM). Further investigation revealed that LRRC56 interacts with the intraflagellar transport (IFT) protein IFT88. The link with IFT was interrogated in Trypanosoma brucei. In this protist, LRRC56 is recruited to the cilium during axoneme construction, where it co-localizes with IFT trains and is required for the addition of dynein arms to the distal end of the flagellum. In T. brucei carrying LRRC56-null mutations, or a variant resulting in the p.Leu259Pro substitution corresponding to the p.Leu140Pro variant seen in one of the affected families, we observed abnormal ciliary beat patterns and an absence of outer dynein arms restricted to the distal portion of the axoneme. Together, our findings confirm that deleterious variants in LRRC56 result in a human disease and suggest that this protein has a likely role in dynein transport during cilia assembly that is evolutionarily important for cilia motility.


Assuntos
Transporte Biológico/genética , Flagelos/genética , Depuração Mucociliar/genética , Mutação/genética , Proteínas/genética , Adulto , Alelos , Axonema/genética , Linhagem Celular , Chlamydomonas/genética , Cílios/genética , Dineínas/genética , Células Epiteliais/patologia , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Fenótipo , Trypanosoma brucei brucei/genética
16.
J Clin Immunol ; 41(2): 441-457, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284430

RESUMO

Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a- histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms "type I IFN," "IFNγ signaling pathway," and "immune responses" as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder.


Assuntos
Contratura/genética , Perda Auditiva Neurossensorial/genética , Histiocitose Sinusal/genética , Histiocitose/genética , Transdução de Sinais/genética , Transcriptoma/genética , Adolescente , Adulto , Doenças Autoimunes/genética , Biomarcadores/metabolismo , Citocinas/genética , Feminino , Expressão Gênica/genética , Histiócitos/metabolismo , Humanos , Inflamação/genética , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Adulto Jovem
17.
Genes Immun ; 21(4): 211-223, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681062

RESUMO

Inflammasomes are key regulators of the host response against microbial pathogens, in addition to limiting aberrant responses to sterile insults, as mediated by environmental agents such as toxins or nanoparticles, and also by endogenous danger signals such as monosodium urate, ATP and amyloid-ß. To date at least six different inflammasome signalling platforms have been reported (Bauernfeind & Hornung, EMBO Mol Med. 2013;5:814-26; Broz & Dixit, Nat Rev Immunol. 2016;16:407). This review focuses on the complex molecular machinery involved in activation and regulation of the best characterised inflammasome, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), and the development of molecular agents to modulate NLRP3 inflammasome function. Activation of the NLRP3 inflammasome induces inflammation via secretion of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) proinflammatory cytokines, with orchestration of pyroptotic cell death, to eliminate invading microbial pathogens. This field has gradually moved from an emphasis on monogenic autoinflammatory conditions, such as cryopyrin-associated periodic syndromes (CAPS), to the broad spectrum of innate immune-mediated disease. NLRP3 inflammasome activation is also linked to a range of common disorders in humans including type 2 diabetes (Krainer et al., J Autoimmun. 2020:102421), cystic fibrosis (Scambler et al., eLife. 2019;8), myocardial infarction, Parkinson's disease, Alzheimer's disease (Savic et al., Nat Rev Rheumatol. 2020:1-16) and cancers such as mesotheliomas and gliomas (Moossavi et al., Mol Cancer. 2018;17:158). We describe how laboratory-based assessment of NLRP3 inflammasome activation is emerging as an integral part of the clinical evaluation and treatment of a range of undifferentiated systemic autoinflammatory disorders (uSAID) (Harrison et al., JCI Insight. 2016;1), where a DNA-based diagnosis has not been possible. In addition, this review summarises the current literature on physiological inhibitors and features various pharmacological approaches that are currently being developed, with potential for clinical translation in autoinflammatory and immune-mediated conditions. We discuss the possibilities of rational drug design, based on detailed structural analyses, and some of the challenges in transferring exciting preliminary results from trials of small-molecule inhibitors of the NLRP3 inflammasome, in animal models of disease, to the clinical situation in human pathology.


Assuntos
Inflamassomos/farmacologia , Inflamassomos/fisiologia , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Transdução de Sinais , Animais , Síndromes Periódicas Associadas à Criopirina , Citocinas , Humanos , Imunidade Inata , Conformação Proteica
18.
Am J Hum Genet ; 100(6): 960-968, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575650

RESUMO

Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder characterized by the abnormal development of the retinal vasculature. The majority of mutations identified in FEVR are found within four genes that encode the receptor complex (FZD4, LRP5, and TSPAN12) and ligand (NDP) of a molecular pathway that controls angiogenesis, the Norrin-ß-catenin signaling pathway. However, half of all FEVR-affected case subjects do not harbor mutations in these genes, indicating that further mutated genes remain to be identified. Here we report the identification of mutations in CTNNB1, the gene encoding ß-catenin, as a cause of FEVR. We describe heterozygous mutations (c.2142_2157dup [p.His720∗] and c.2128C>T [p.Arg710Cys]) in two dominant FEVR-affected families and a de novo mutation (c.1434_1435insC [p.Glu479Argfs∗18]) in a simplex case subject. Previous studies have reported heterozygous de novo CTNNB1 mutations as a cause of syndromic intellectual disability (ID) and autism spectrum disorder, and somatic mutations are linked to many cancers. However, in this study we show that Mendelian inherited CTNNB1 mutations can cause non-syndromic FEVR and that FEVR can be a part of the syndromic ID phenotype, further establishing the role that ß-catenin signaling plays in the development of the retinal vasculature.


Assuntos
Doenças Retinianas/genética , Transdução de Sinais , beta Catenina/metabolismo , Sequência de Bases , Oftalmopatias Hereditárias , Vitreorretinopatias Exsudativas Familiares , Feminino , Heterozigoto , Humanos , Luciferases/metabolismo , Masculino , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Linhagem , Fenótipo , Transcrição Gênica
19.
Genet Med ; 22(12): 2041-2051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32753734

RESUMO

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Assuntos
Síndrome de Ellis-Van Creveld , Degeneração Retiniana , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Éxons , Humanos , Mutação , Linhagem , Retina , Degeneração Retiniana/genética
20.
Hum Mol Genet ; 26(10): 1863-1876, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334996

RESUMO

'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Ameloblastos/metabolismo , Animais , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação Puntual , Estresse Fisiológico , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa