Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 76(1): 177-190.e5, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31421981

RESUMO

The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética
2.
Dev Dyn ; 249(4): 483-495, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31774605

RESUMO

The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin-response outputs. The nuclear auxin signaling pathway controls auxin-responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia
3.
Nat Commun ; 13(1): 4015, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817767

RESUMO

Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1 revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective in AFF1 display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1 -mediated regulation of ARF protein drives aspects of auxin response and plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
4.
Mol Biochem Parasitol ; 238: 111291, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479776

RESUMO

In free-living and parasitic nematodes, the methylation of phosphoethanolamine to phosphocholine provides a key metabolite to sustain phospholipid biosynthesis for growth and development. Because the phosphoethanolamine methyltransferases (PMT) of nematodes are essential for normal growth and development, these enzymes are potential targets of inhibitor design. The pine wilt nematode (Bursaphelenchus xylophilus) causes extensive damage to trees used for lumber and paper in Asia. As a first step toward testing BxPMT1 as a potential nematicide target, we determined the 2.05 Å resolution x-ray crystal structure of the enzyme as a dead-end complex with phosphoethanolamine and S-adenosylhomocysteine. The three-dimensional structure of BxPMT1 served as a template for site-directed mutagenesis to probe the contribution of active site residues to catalysis and phosphoethanolamine binding using steady-state kinetic analysis. Biochemical analysis of the mutants identifies key residues on the ß1d-α6 loop (W123F, M126I, and Y127F) and ß1e-α7 loop (S155A, S160A, H170A, T178V, and Y180F) that form the phosphobase binding site and suggest that Tyr127 facilitates the methylation reaction in BxPMT1.


Assuntos
Etanolaminas/química , Proteínas de Helminto/química , Metiltransferases/química , Nematoides/enzimologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Nematoides/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
5.
Dev Cell ; 50(5): 599-609.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31327740

RESUMO

Developmental processes that control root system architecture are critical for soil exploration by plants, allowing for uptake of water and nutrients. Conversion of the auxin precursor indole-3-butyric acid (IBA) to active auxin (indole-3-acetic acid; IAA) modulates lateral root formation. However, mechanisms governing IBA-to-IAA conversion have yet to be elucidated. We identified TRANSPORTER OF IBA1 (TOB1) as a vacuolar IBA transporter that limits lateral root formation. Moreover, TOB1, which is transcriptionally regulated by the phytohormone cytokinin, is necessary for the ability of cytokinin to exert inhibitory effects on lateral root production. The increased production of lateral roots in tob1 mutants, TOB1 transport of IBA into the vacuole, and cytokinin-regulated TOB1 expression provide a mechanism linking cytokinin signaling and IBA contribution to the auxin pool to tune root system architecture.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis , Membranas Intracelulares/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Vacúolos/metabolismo
6.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-26918184

RESUMO

As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa