Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544855

RESUMO

Ecological interactions uphold ecosystem structure and functioning. However, as species richness increases, the number of possible interactions rises exponentially. More than 6,000 species of coral reef fishes exist across the world's tropical oceans, resulting in an almost innumerable array of possible trophic interactions. Distilling general patterns in these interactions across different bioregions stands to improve our understanding of the processes that govern coral reef functioning. Here, we show that across bioregions, tropical coral reef food webs exhibit a remarkable congruence in their trophic interactions. Specifically, by compiling and investigating the structure of six coral reef food webs across distinct bioregions, we show that when accounting for consumer size and resource availability, these food webs share more trophic interactions than expected by chance. In addition, coral reef food webs are dominated by dietary specialists, which makes trophic pathways vulnerable to biodiversity loss. Prey partitioning among these specialists is geographically consistent, and this pattern intensifies when weak interactions are disregarded. Our results suggest that energy flows through coral reef communities along broadly comparable trophic pathways. Yet, these critical pathways are maintained by species with narrow, specialized diets, which threatens the existence of coral reef functioning in the face of biodiversity loss.


Assuntos
Biodiversidade , Recifes de Corais , Dieta , Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Biomassa , Peixes/classificação
2.
PLoS Biol ; 18(12): e3000702, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370276

RESUMO

Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.


Assuntos
Peixes/microbiologia , Cadeia Alimentar , Microbioma Gastrointestinal/fisiologia , Animais , Teorema de Bayes , Tamanho Corporal , Recifes de Corais , Dieta , Ecologia , Ecossistema , Peixes/metabolismo , Modelos Teóricos , Filogenia , Reprodutibilidade dos Testes
3.
R Soc Open Sci ; 11(7): 240187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050726

RESUMO

The persistence of reef-building corals is threatened by macroalgal competitors leading to a major demographic bottleneck in coral recruitment. Whether parental effects exist under coral-algal competition and whether they influence offspring performance via microbiome alterations represent major gaps in our understanding of the mechanisms by which macroalgae may hinder coral recovery. We investigated the diversity, variability and composition of the microbiome of adults and larvae of the coral Pocillopora acuta and surrounding benthic substrate on algal-removed and algal-dominated bommies. We then assessed the relative influence of parental and offspring environmental effects on coral recruitment processes by reciprocally exposing coral larvae from two parental origins (algal-removed and algal-dominated bommies) to algal-removed and algal-dominated environmental conditions. Dense macroalgal assemblages impacted the microbiome composition of coral larvae. Larvae produced by parents from algal-dominated bommies were depleted in putative beneficial bacteria and enriched in opportunistic taxa. These larvae had a significantly lower survival compared to larvae from algal-removed bommies regardless of environmental conditions. In contrast, algal-induced parental and offspring environmental effects interacted to reduce the survival of coral recruits. Together our results demonstrate negative algal-induced parental and offspring environmental effects on coral recruitment that could be mediated by alterations in the offspring microbiome.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa