Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(2): 265-277, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707084

RESUMO

According to historical records of transatlantic slavery, traders forcibly deported an estimated 12.5 million people from ports along the Atlantic coastline of Africa between the 16th and 19th centuries, with global impacts reaching to the present day, more than a century and a half after slavery's abolition. Such records have fueled a broad understanding of the forced migration from Africa to the Americas yet remain underexplored in concert with genetic data. Here, we analyzed genotype array data from 50,281 research participants, which-combined with historical shipping documents-illustrate that the current genetic landscape of the Americas is largely concordant with expectations derived from documentation of slave voyages. For instance, genetic connections between people in slave trading regions of Africa and disembarkation regions of the Americas generally mirror the proportion of individuals forcibly moved between those regions. While some discordances can be explained by additional records of deportations within the Americas, other discordances yield insights into variable survival rates and timing of arrival of enslaved people from specific regions of Africa. Furthermore, the greater contribution of African women to the gene pool compared to African men varies across the Americas, consistent with literature documenting regional differences in slavery practices. This investigation of the transatlantic slave trade, which is broad in scope in terms of both datasets and analyses, establishes genetic links between individuals in the Americas and populations across Atlantic Africa, yielding a more comprehensive understanding of the African roots of peoples of the Americas.


Assuntos
População Negra/genética , Polimorfismo de Nucleotídeo Único/genética , África , América , Pessoas Escravizadas , Europa (Continente) , Feminino , Humanos , Masculino
2.
Nature ; 523(7561): 455-458, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26087396

RESUMO

Kennewick Man, referred to as the Ancient One by Native Americans, is a male human skeleton discovered in Washington state (USA) in 1996 and initially radiocarbon dated to 8,340-9,200 calibrated years before present (BP). His population affinities have been the subject of scientific debate and legal controversy. Based on an initial study of cranial morphology it was asserted that Kennewick Man was neither Native American nor closely related to the claimant Plateau tribes of the Pacific Northwest, who claimed ancestral relationship and requested repatriation under the Native American Graves Protection and Repatriation Act (NAGPRA). The morphological analysis was important to judicial decisions that Kennewick Man was not Native American and that therefore NAGPRA did not apply. Instead of repatriation, additional studies of the remains were permitted. Subsequent craniometric analysis affirmed Kennewick Man to be more closely related to circumpacific groups such as the Ainu and Polynesians than he is to modern Native Americans. In order to resolve Kennewick Man's ancestry and affiliations, we have sequenced his genome to ∼1× coverage and compared it to worldwide genomic data including for the Ainu and Polynesians. We find that Kennewick Man is closer to modern Native Americans than to any other population worldwide. Among the Native American groups for whom genome-wide data are available for comparison, several seem to be descended from a population closely related to that of Kennewick Man, including the Confederated Tribes of the Colville Reservation (Colville), one of the five tribes claiming Kennewick Man. We revisit the cranial analyses and find that, as opposed to genome-wide comparisons, it is not possible on that basis to affiliate Kennewick Man to specific contemporary groups. We therefore conclude based on genetic comparisons that Kennewick Man shows continuity with Native North Americans over at least the last eight millennia.


Assuntos
Indígenas Norte-Americanos/genética , Filogenia , Esqueleto , América , Genoma Humano/genética , Genômica , Humanos , Masculino , Crânio/anatomia & histologia , Washington
3.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522598

RESUMO

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Assuntos
Genoma Humano/genética , Indígenas Norte-Americanos/genética , Filogenia , Arqueologia , Ásia/etnologia , Osso e Ossos , Sepultamento , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Europa (Continente)/etnologia , Fluxo Gênico/genética , Haplótipos/genética , História Antiga , Humanos , Lactente , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Montana , Dinâmica Populacional , Datação Radiométrica
4.
Am J Hum Genet ; 98(4): 728-34, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058445

RESUMO

Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups.


Assuntos
Cromossomos Humanos Y/genética , Homem de Neandertal/genética , Animais , Caderinas/genética , DNA/genética , Variação Genética , Histona Desmetilases/genética , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/genética , Mutação de Sentido Incorreto , Pan troglodytes/genética , Protocaderinas , Análise de Sequência de DNA , Espanha , Ubiquitina Tiolesterase/genética
5.
Am J Hum Genet ; 98(5): 919-933, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27126583

RESUMO

Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2-6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes.


Assuntos
Cromossomos Humanos Y/genética , Genoma Humano , Haplótipos/genética , Repetições de Microssatélites/genética , Taxa de Mutação , Mutação/genética , Genótipo , Humanos , Masculino
6.
BMC Genomics ; 19(1): 608, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107783

RESUMO

BACKGROUND: As most ancient biological samples have low levels of endogenous DNA, it is advantageous to enrich for specific genomic regions prior to sequencing. One approach-in-solution capture-enrichment-retrieves sequences of interest and reduces the fraction of microbial DNA. In this work, we implement a capture-enrichment approach targeting informative regions of the Y chromosome in six human archaeological remains excavated in the Caribbean and dated between 200 and 3000 years BP. We compare the recovery rate of Y-chromosome capture (YCC) alone, whole-genome capture followed by YCC (WGC + YCC) versus non-enriched (pre-capture) libraries. RESULTS: The six samples show different levels of initial endogenous content, with very low (< 0.05%, 4 samples) or low (0.1-1.54%, 2 samples) percentages of sequenced reads mapping to the human genome. We recover 12-9549 times more targeted unique Y-chromosome sequences after capture, where 0.0-6.2% (WGC + YCC) and 0.0-23.5% (YCC) of the sequence reads were on-target, compared to 0.0-0.00003% pre-capture. In samples with endogenous DNA content greater than 0.1%, we found that WGC followed by YCC (WGC + YCC) yields lower enrichment due to the loss of complexity in consecutive capture experiments, whereas in samples with lower endogenous content, the libraries' initial low complexity leads to minor proportions of Y-chromosome reads. Finally, increasing recovery of informative sites enabled us to assign Y-chromosome haplogroups to some of the archeological remains and gain insights about their paternal lineages and origins. CONCLUSIONS: We present to our knowledge the first in-solution capture-enrichment method targeting the human Y-chromosome in aDNA sequencing libraries. YCC and WGC + YCC enrichments lead to an increase in the amount of Y-DNA sequences, as compared to libraries not enriched for the Y-chromosome. Our probe design effectively recovers regions of the Y-chromosome bearing phylogenetically informative sites, allowing us to identify paternal lineages with less sequencing than needed for pre-capture libraries. Finally, we recommend considering the endogenous content in the experimental design and avoiding consecutive rounds of capture, as clonality increases considerably with each round.


Assuntos
Cromossomos Humanos Y , DNA Antigo/análise , DNA Antigo/isolamento & purificação , Biblioteca Gênica , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Genômica , História Antiga , Humanos
7.
Proc Natl Acad Sci U S A ; 112(12): 3669-73, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25755263

RESUMO

Between 1500 and 1850, more than 12 million enslaved Africans were transported to the New World. The vast majority were shipped from West and West-Central Africa, but their precise origins are largely unknown. We used genome-wide ancient DNA analyses to investigate the genetic origins of three enslaved Africans whose remains were recovered on the Caribbean island of Saint Martin. We trace their origins to distinct subcontinental source populations within Africa, including Bantu-speaking groups from northern Cameroon and non-Bantu speakers living in present-day Nigeria and Ghana. To our knowledge, these findings provide the first direct evidence for the ethnic origins of enslaved Africans, at a time for which historical records are scarce, and demonstrate that genomic data provide another type of record that can shed new light on long-standing historical questions.


Assuntos
Pessoas Escravizadas , Genética Populacional , Estudo de Associação Genômica Ampla , África/etnologia , Algoritmos , Arqueologia , Teorema de Bayes , População Negra/genética , Região do Caribe/etnologia , Cromossomos Humanos Y/genética , Análise por Conglomerados , DNA Mitocondrial/genética , Escravização , Etnicidade/genética , Marcadores Genéticos , Genoma Humano , Haplótipos , Humanos , Funções Verossimilhança , Análise de Componente Principal , Probabilidade , Análise de Sequência de DNA
8.
Kidney Int ; 80(1): 105-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21412220

RESUMO

A genome-wide association scan of the Genetics of Kidneys in Diabetes (GoKinD) collections identified four novel susceptibility loci, located on chromosomes 7p14.3, 9q21.32, 11p15.4, and 13q33.3 associated with type 1 diabetic nephropathy. A recent evaluation of these loci in Japanese patients with type 2 diabetes supported an association at the 13q33.3 locus. To follow up these findings, we determined whether single-nucleotide polymorphisms (SNPs) at these same four loci were associated with diabetic nephropathy in the Joslin Study of Genetics of Nephropathy in Type 2 Diabetes collection. A total of 6 SNPs across these loci were genotyped in 646 normoalbuminuric controls and in 743 nephropathy patients of European ancestry. A significant association was identified at the 13q33.3 locus (rs9521445: P = 4.4 × 10(-3)). At this same locus, rs1411766 was also significantly associated with type 2 diabetic nephropathy (P = 0.03). Meta-analysis of these data with those of the Japanese and GoKinD collections significantly improved the strength of the association (P = 9.7 × 10(-9)). In addition, there was a significant association at the 11p15.4 locus (rs451041: P = 0.02). Thus, associations identified in the GoKinD collections on chromosomes 11p15.4 (near the CARS gene) and 13q33.3 (within an intergenic region between MYO16 and IRS2) are susceptibility loci of kidney disease common to both type 1 and 2 diabetes.


Assuntos
Cromossomos Humanos Par 13/genética , DNA Intergênico/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 11/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
9.
Mol Genet Metab ; 103(1): 60-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21277817

RESUMO

Genetic data support the notion that polymorphisms in members of the matrix metalloproteinase (MMP) family of genes play an important role in extracellular matrix remodeling and contribute to the pathogenesis of vascular disease. To identify novel genetic markers for diabetic nephropathy (DN), we examined the relationship between MMP gene polymorphisms and DN in the Genetics of Kidneys in Diabetes (GoKinD) population. Genotypic data from the Genetic Association Information Network (GAIN) type 1 DN project were analyzed for associations across 21 MMP genes in 1705 individual with type 1 diabetes, including 885 normoalbuminuric control subjects and 820 advanced DN case subjects. In total, we investigated the role of 1283 SNPs (198 genotyped SNPs and 1085 imputed SNPs) mapping to the MMP genes. We identified associations at several correlated SNPs across a 29.2kb interval on chromosome 11q at the MMP-3/MMP-12 locus. The strongest associations occurred at 2 highly-correlated SNPs, rs610950 (OR=0.50, P=1.6×10(-5)) and rs1277718 (OR=0.50, P=2.1×10(-5)). Further examination of this locus identified 17 SNPs (2 genotyped SNPs and 15 imputed SNPs) in complete linkage disequilibrium associated with DN (P-values<2.5×10(-4)), including a non-synonymous SNP (rs652438, Asn357Ser) located in exon 8 of MMP-12 that significantly reduced the risk of DN among carriers of the serine substitution relative to homozygous carriers of asparagine (OR=0.51; 95% CI=0.37-0.71, P=6.2×10(-5)). Taken together, our study suggests that genetic variations within the MMP-3/MMP-12 locus influence susceptibility of DN in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Variação Genética , Metaloproteinases da Matriz/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lactente , Recém-Nascido , Adulto Jovem
10.
Diabetes ; 55(12): 3358-65, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17130480

RESUMO

We performed a variance components linkage analysis of renal function, measured as glomerular filtration rate (GFR), in 63 extended families with multiple members with type 2 diabetes. GFR was estimated from serum concentrations of cystatin C and creatinine in 406 diabetic and 428 nondiabetic relatives. Results for cystatin C were summarized because they are superior to creatinine results. GFR aggregates in families with significant heritability (h(2)) in diabetic (h(2) = 0.45, P < 1 x 10(-5)) and nondiabetic (h(2) = 0.36, P < 1 x 10(-3)) relatives. Genetic correlation (r(G) = 0.35) between the GFR of diabetic and nondiabetic relatives was less than one (P = 0.01), suggesting that genes controlling GFR variation in these groups are different. Linkage results supported this interpretation. In diabetic relatives, linkage was strong on chromosome 2q (logarithm of odds [LOD] = 4.1) and suggestive on 10q (LOD = 3.1) and 18p (LOD = 2.2). In nondiabetic relatives, linkage was suggestive on 3q (LOD = 2.2) and 11p (LOD = 2.1). When diabetic and nondiabetic relatives were combined, strong evidence for linkage was found only on 7p (LOD = 4.0). In conclusion, partially distinct sets of genes control GFR variation in relatives with and without diabetes on chromosome 2q, possibly on 10q and 18p in the former, and on 7p in both. None of these genes overlaps with genes controlling variation in urinary albumin excretion.


Assuntos
Mapeamento Cromossômico , Cistatinas/sangue , Cistatinas/genética , DNA/genética , Diabetes Mellitus Tipo 2/genética , Variação Genética , Genoma Humano , Testes de Função Renal , Adulto , Idade de Início , Idoso , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 2 , Cromossomos Humanos Par 7 , Cistatina C , DNA/isolamento & purificação , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Família , Genótipo , Taxa de Filtração Glomerular , Humanos , Pessoa de Meia-Idade , Valores de Referência
11.
Nat Genet ; 48(6): 593-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111036

RESUMO

We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.


Assuntos
Cromossomos Humanos Y , Demografia , Haplótipos , Humanos , Masculino , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
12.
Eur J Hum Genet ; 23(1): 124-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24667786

RESUMO

R1a-M420 is one of the most widely spread Y-chromosome haplogroups; however, its substructure within Europe and Asia has remained poorly characterized. Using a panel of 16 244 male subjects from 126 populations sampled across Eurasia, we identified 2923 R1a-M420 Y-chromosomes and analyzed them to a highly granular phylogeographic resolution. Whole Y-chromosome sequence analysis of eight R1a and five R1b individuals suggests a divergence time of ∼25,000 (95% CI: 21,300-29,000) years ago and a coalescence time within R1a-M417 of ∼5800 (95% CI: 4800-6800) years. The spatial frequency distributions of R1a sub-haplogroups conclusively indicate two major groups, one found primarily in Europe and the other confined to Central and South Asia. Beyond the major European versus Asian dichotomy, we describe several younger sub-haplogroups. Based on spatial distributions and diversity patterns within the R1a-M420 clade, particularly rare basal branches detected primarily within Iran and eastern Turkey, we conclude that the initial episodes of haplogroup R1a diversification likely occurred in the vicinity of present-day Iran.


Assuntos
Alelos , Cromossomos Humanos Y , Haplótipos , Filogenia , Filogeografia , Ásia , Etnicidade/genética , Europa (Continente) , Evolução Molecular , Frequência do Gene , Ligação Genética , Humanos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise Espacial
13.
Science ; 341(6145): 562-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23908239

RESUMO

The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (T(MRCA)) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome T(MRCA) to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.


Assuntos
Cromossomos Humanos Y/classificação , Cromossomos Humanos Y/genética , Variação Genética , População Negra/genética , Evolução Molecular , Feminino , Genoma Mitocondrial/genética , Haploidia , Humanos , Masculino , Mutação , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
14.
Nat Commun ; 4: 2928, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346185

RESUMO

Previous Y-chromosome studies have demonstrated that Ashkenazi Levites, members of a paternally inherited Jewish priestly caste, display a distinctive founder event within R1a, the most prevalent Y-chromosome haplogroup in Eastern Europe. Here we report the analysis of 16 whole R1 sequences and show that a set of 19 unique nucleotide substitutions defines the Ashkenazi R1a lineage. While our survey of one of these, M582, in 2,834 R1a samples reveals its absence in 922 Eastern Europeans, we show it is present in all sampled R1a Ashkenazi Levites, as well as in 33.8% of other R1a Ashkenazi Jewish males and 5.9% of 303 R1a Near Eastern males, where it shows considerably higher diversity. Moreover, the M582 lineage also occurs at low frequencies in non-Ashkenazi Jewish populations. In contrast to the previously suggested Eastern European origin for Ashkenazi Levites, the current data are indicative of a geographic source of the Levite founder lineage in the Near East and its likely presence among pre-Diaspora Hebrews.


Assuntos
Cromossomos Humanos Y , Frequência do Gene , Haplótipos , Judeus/genética , Filogenia , Europa Oriental , Variação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
15.
Diabetes ; 58(11): 2698-702, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19651817

RESUMO

OBJECTIVE: To examine the association between single nucleotide polymorphisms (SNPs) in the engulfment and cell motility 1 (ELMO1) gene, a locus previously shown to be associated with diabetic nephropathy in two ethnically distinct type 2 diabetic populations, and the risk of nephropathy in type 1 diabetes. RESEARCH DESIGN AND METHODS: Genotypic data from a genome-wide association scan (GWAS) of the Genetics of Kidneys in Diabetes (GoKinD) study collection were analyzed for associations across the ELMO1 locus. In total, genetic associations were assessed using 118 SNPs and 1,705 individuals of European ancestry with type 1 diabetes (885 normoalbuminuric control subjects and 820 advanced diabetic nephropathy case subjects). RESULTS: The strongest associations in ELMO1 occurred at rs11769038 (odds ratio [OR] 1.24; P = 1.7 x 10(-3)) and rs1882080 (OR 1.23; P = 3.2 x 10(-3)) located in intron 16. Two additional SNPs, located in introns 18 and 20, respectively, were also associated with diabetic nephropathy. No evidence of association for variants previously reported in type 2 diabetes was observed in our collection. CONCLUSIONS: Using GWAS data from the GoKinD collection, we comprehensively examined evidence of association across the ELMO1 locus. Our investigation marks the third report of associations in ELMO1 with diabetic nephropathy, further establishing its role in the susceptibility of this disease. There is evidence of allelic heterogeneity, contributed by the diverse genetic backgrounds of the different ethnic groups examined. Further investigation of SNPs at this locus is necessary to fully understand the commonality of these associations and the mechanism(s) underlying their role in diabetic nephropathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idade de Início , Pressão Sanguínea , Movimento Celular , Criança , Pré-Escolar , Diabetes Mellitus Tipo 2/fisiopatologia , Etnicidade/genética , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Rim/fisiologia , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valores de Referência , População Branca/genética
16.
Diabetes ; 58(6): 1403-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19252134

RESUMO

OBJECTIVE: Despite extensive evidence for genetic susceptibility to diabetic nephropathy, the identification of susceptibility genes and their variants has had limited success. To search for genes that contribute to diabetic nephropathy, a genome-wide association scan was implemented on the Genetics of Kidneys in Diabetes collection. RESEARCH DESIGN AND METHODS: We genotyped approximately 360,000 single nucleotide polymorphisms (SNPs) in 820 case subjects (284 with proteinuria and 536 with end-stage renal disease) and 885 control subjects with type 1 diabetes. Confirmation of implicated SNPs was sought in 1,304 participants of the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, a long-term, prospective investigation of the development of diabetes-associated complications. RESULTS: A total of 13 SNPs located in four genomic loci were associated with diabetic nephropathy with P < 1 x 10(-5). The strongest association was at the FRMD3 (4.1 protein ezrin, radixin, moesin [FERM] domain containing 3) locus (odds ratio [OR] = 1.45, P = 5.0 x 10(-7)). A strong association was also identified at the CARS (cysteinyl-tRNA synthetase) locus (OR = 1.36, P = 3.1 x 10(-6)). Associations between both loci and time to onset of diabetic nephropathy were supported in the DCCT/EDIC study (hazard ratio [HR] = 1.33, P = 0.02, and HR = 1.32, P = 0.01, respectively). We demonstratedexpression of both FRMD3 and CARS in human kidney. CONCLUSIONS: We identified genetic associations for susceptibility to diabetic nephropathy at two novel candidate loci near the FRMD3 and CARS genes. Their identification implicates previously unsuspected pathways in the pathogenesis of this important late complication of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Predisposição Genética para Doença , Genoma Humano , Falência Renal Crônica/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Proteínas do Citoesqueleto/genética , Diabetes Mellitus Tipo 1/complicações , Estudo de Associação Genômica Ampla , Humanos , Rim/fisiopatologia , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Proteinúria/genética
17.
Diabetes ; 57(9): 2519-26, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18559660

RESUMO

OBJECTIVE: Epidemiological and family studies have demonstrated that susceptibility genes play an important role in the etiology of diabetic nephropathy, defined as persistent proteinuria or end-stage renal disease (ESRD) in type 1 diabetes. RESEARCH DESIGN AND METHODS: To efficiently search for genomic regions harboring diabetic nephropathy genes, we conducted a scan using 5,382 informative single nucleotide polymorphisms on 100 sibpairs concordant for type 1 diabetes but discordant for diabetic nephropathy. In addition to being powerful for detecting linkage to diabetic nephropathy, this design allows linkage analysis on type 1 diabetes via traditional affected sibpair (ASP) analysis. In weighing the evidence for linkage, we considered maximum logarithm of odds score (maximum likelihood score [MLS]) values and corresponding allelic sharing patterns, calculated and viewed graphically using the software package SPLAT. RESULTS: Our primary finding for diabetic nephropathy, broadly defined, is on chromosome 19q (MLS = 3.1), and a secondary peak exists on chromosome 2q (MLS = 2.1). Stratification of discordant sibpairs based on whether disease had progressed to ESRD suggested four tertiary peaks on chromosome 1q (ESRD only), chromosome 20p (proteinuria only), and chromosome 3q (two loci 58 cm apart, one for ESRD only and another for proteinuria only). Additionally, analysis of 130 ASPs for type 1 diabetes confirmed the linkage to the HLA region on chromosome 6p (MLS = 9.2) and IDDM15 on chromosome 6q (MLS = 3.1). CONCLUSIONS: This study identified several novel loci as candidates for diabetic nephropathy, none of which appear to be the sole genetic determinant of diabetic nephropathy in type 1 diabetes. In addition, this study confirms two previously reported type 1 diabetes loci.


Assuntos
Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Ligação Genética , Genômica , Polimorfismo de Nucleotídeo Único , Adulto , Cromossomos Humanos Par 20 , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 6 , Diabetes Mellitus Tipo 1/epidemiologia , Nefropatias Diabéticas/epidemiologia , Saúde da Família , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Masculino , Pessoa de Meia-Idade , Irmãos
18.
Atherosclerosis ; 196(2): 863-70, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17343862

RESUMO

OBJECTIVE: Individual propensity to chronic, low-grade inflammation--a determinant of atherosclerosis-is in part under the control of genetic factors. To identify genes involved in this modulation, we performed a 10cM genome screen for linkage with plasma C-reactive protein in 38 extended families including 317 non-diabetic and 177 type 2 diabetic family members (2547 relative pairs). METHODS AND RESULTS: In a variance component analysis, heritability of CRP values was significant (h(2)=0.39, p<0.0001). This effect was independent of BMI and was present in both diabetic (h(2)=0.42, p=0.003) and non-diabetic (h(2)=0.34, p=0.0015) relatives. The strongest evidence of linkage with CRP was on chromosome 5p15, where the LOD score reached genome-wide significance (LOD=3.41, genome-wide p=0.013). Both diabetic and non-diabetic family members contributed to linkage at this location. Smaller linkage peaks were detected on chromosomes 5q35 (LOD=1.35) and 17p11 (LOD=1.33). When the analysis was restricted to diabetic family members, another peak of moderate intensity (LOD=2.17) was evident at 3p21. CONCLUSIONS: A major gene influencing CRP levels appears to be located on chromosome 5p15, with an effect that is independent of diabetes. Another gene on 3p21 may control CRP variation but only in the presence of a diabetic or insulin-resistant environment.


Assuntos
Proteína C-Reativa/genética , Cromossomos Humanos Par 5 , Adulto , Análise de Variância , Diabetes Mellitus Tipo 2/genética , Saúde da Família , Feminino , Ligação Genética , Genoma Humano , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade
19.
Mol Med ; 13(7-8): 407-14, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17622328

RESUMO

A significant portion of patients with 22q11 deletion syndrome (22q11DS) develop psychiatric disorders, including schizophrenia and other psychotic and affective symptoms, and the responsible gene/s are assumed to also play a significant role in the etiology of nonsyndromic psychiatric disease. The most common psychiatric diagnosis among patients with 22q11DS is schizophrenia, thought to result from neurotransmitter imbalances and also from disturbed brain development. Several genes in the 22q11 region with known or suspected roles in neurotransmitter metabolism have been analyzed in patients with isolated schizophrenia; however, their contribution to the disease remains controversial. Haploinsufficiency of the TBX1 gene has been shown to be sufficient to cause the core physical malformations associated with 22q11DS in mice and humans and via abnormal brain development could contribute to 22q11DS-related and isolated psychiatric disease. 22q11DS populations also have increased rates of psychiatric conditions other than schizophrenia, including mood disorders. We therefore analyzed variations at the TBX1 locus in a cohort of 446 white patients with psychiatric disorders relevant to 22q11DS and 436 ethnically matched controls. The main diagnoses included schizophrenia (n = 226), schizoaffective disorder (n = 67), bipolar disorder (n = 82), and major depressive disorder (n = 29). We genotyped nine tag SNPs in this sample but did not observe significant differences in allele or haplotype frequencies in any of the analyzed groups (all affected, schizophrenia and schizoaffective disorder, schizophrenia alone, and bipolar disorder and major depressive disorder) compared with the control group. Based on these results we conclude that TBX1 variation does not make a strong contribution to the genetic etiology of nonsyndromic forms of psychiatric disorders commonly seen in patients with 22q11DS.


Assuntos
Transtornos do Humor/genética , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Proteínas com Domínio T/genética , Adulto , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Feminino , Haplótipos , Humanos , Masculino
20.
Am J Hum Genet ; 78(2): 222-30, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16358216

RESUMO

Sib pair linkage analysis of a dichotomous trait is a popular method for narrowing the search for genes that influence complex diseases. Although the pedigree structures are uncomplicated and the underlying genetic principles straightforward, a surprising degree of complexity is involved in implementing a sib pair study and interpreting the results. Ascertainment may be based on affected, discordant, or unaffected sib pairs, as well as on pairs defined by threshold values for quantitative traits, such as extreme discordant sib pairs. To optimize power, various domain restrictions and null hypotheses have been proposed for each of these designs, yielding a wide array of choices for the analyst. To begin, we systematically classify the major sources of discretion in sib pair linkage analysis. Then, we extend the work of Kruglyak and Lander (1995), to bring the various forms into a unified framework and to facilitate a more general approach to the analysis. Finally, we describe a new, freely available computer program, Splat (Sib Pair Linkage Analysis Testing), that can perform any sib pair statistical test currently in use, as well as any user-defined test yet to be proposed. Splat uses the expectation maximization algorithm to calculate maximum-likelihood estimates of sharing (subject to user-specified conditions) and then plots LOD scores versus chromosomal position. It includes a novel grid-scanning capability that enables simultaneous visualization of multiple test statistics. This can lead to further insight into the genetic basis of the disease process under consideration. In addition, phenotype definitions can be modified without the recalculation of inheritance vectors, thereby providing considerable flexibility for exploratory analysis. The application of Splat will be illustrated with data from studies on the genetics of diabetic nephropathy.


Assuntos
Ligação Genética , Irmãos , Software , Estudos em Gêmeos como Assunto/métodos , Algoritmos , Mapeamento Cromossômico , Simulação por Computador , Humanos , Escore Lod
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa