Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Atmos Chem Phys ; 19(1): 181-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828349

RESUMO

An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440 nm (ω 0,440) is on average overestimated (underestimated) by 3-5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω 0,440 by ~ 14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω 0,440 bias to -1/-3 %. The black carbon absorption enhancement (E abs) in core-shell with respect to the externally mixed state is in the range 1.8-2.5, which is above the currently most accepted upper limit of ~ 1.5. The partial internal mixing reduces E abs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE 675 440 is overestimated by 70-120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.

2.
Atmos Chem Phys ; 18(12): 8929-8952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147714

RESUMO

In the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), and as contribution to the second phase of the Hemispheric Transport of Air Pollution (HTAP2) activities for Europe and North America, the impacts of a 20 % decrease of global and regional anthropogenic emissions on surface air pollutant levels in 2010 are simulated by an international community of regional-scale air quality modeling groups, using different state-of-the-art chemistry and transport models (CTMs). The emission perturbations at the global level, as well as over the HTAP2-defined regions of Europe, North America and East Asia, are first simulated by the global Composition Integrated Forecasting System (C-IFS) model from European Centre for Medium-Range Weather Forecasts (ECMWF), which provides boundary conditions to the various regional CTMs participating in AQMEII3. On top of the perturbed boundary conditions, the regional CTMs used the same set of perturbed emissions within the regional domain for the different perturbation scenarios that introduce a 20 % reduction of anthropogenic emissions globally as well as over the HTAP2-defined regions of Europe, North America and East Asia. Results show that the largest impacts over both domains are simulated in response to the global emission perturbation, mainly due to the impact of domestic emission reductions. The responses of NO2, SO2 and PM concentrations to a 20 % anthropogenic emission reduction are almost linear (~ 20 % decrease) within the global perturbation scenario with, however, large differences in the geographical distribution of the effect. NO2, CO and SO2 levels are strongly affected over the emission hot spots. O3 levels generally decrease in all scenarios by up to ~ 1 % over Europe, with increases over the hot spot regions, in particular in the Benelux region, by an increase up to ~ 6 % due to the reduced effect of NOx titration. O3 daily maximum of 8 h running average decreases in all scenarios over Europe, by up to ~ 1 %. Over the North American domain, the central-to-eastern part and the western coast of the US experience the largest response to emission perturbations. Similar but slightly smaller responses are found when domestic emissions are reduced. The impact of intercontinental transport is relatively small over both domains, however, still noticeable particularly close to the boundaries. The impact is noticeable up to a few percent, for the western parts of the North American domain in response to the emission reductions over East Asia. O3 daily maximum of 8 h running average decreases in all scenarios over north Europe by up to ~ 5 %. Much larger reductions are calculated over North America compared to Europe. In addition, values of the Response to Extra-Regional Emission Reductions (RERER) metric have been calculated in order to quantify the differences in the strengths of nonlocal source contributions to different species among the different models. We found large RERER values for O3 (~ 0.8) over both Europe and North America, indicating a large contribution from non-local sources, while for other pollutants including particles, low RERER values reflect a predominant control by local sources. A distinct seasonal variation in the local vs. non-local contributions has been found for both O3 and PM2.5, particularly reflecting the springtime long-range transport to both continents.

3.
Atmos Chem Phys ; 18(8): 5967-5989, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30079086

RESUMO

The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry-transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.

4.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115

RESUMO

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

5.
Atmos Chem Phys ; 18: 2727-2744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30972110

RESUMO

In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail, and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global-scale or only regional-scale models. The study utilizes 13 regional and 7 global models participating in the Hemispheric Transport of Air Pollutants phase 2 (HTAP2)-Air Quality Model Evaluation International Initiative phase 3 (AQMEII3) activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring rural stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured power spectra of all models and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. This study has been conducted in the attempt to identify that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. The improvements are visible in a slight increase of the diversity (4 % for the hourly time series, 10 % for the daily maximum time series) and a smaller improvement of the accuracy compared to diversity. Root mean square error (RMSE) improved by 13-16 % compared to G and by 2-3 % compared to R. Probability of detection (POD) and false-alarm rate (FAR) show a remarkable improvement, with a steep increase in the largest POD values and smallest values of FAR across the concentration ranges. The results show that the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. This implies that for the majority of the cases the regional-scale set of models governs the ensemble. However given the high degree of redundancy that characterizes the regional-scale models, no further improvement could be expected in the ensemble performance by adding yet more regional models to it. Therefore the improvement obtained with the hybrid set can confidently be attributed to the different nature of the global models. The study strongly reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.

6.
Atmos Chem Phys ; 17(4): 3001-3054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147713

RESUMO

Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.

7.
Ann Chim ; 94(1-2): 17-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15141462

RESUMO

This is the first of a series of two papers intended to review the state-of-the-art knowledge on atmospheric PAHs, concerning their monitoring, sources and transformation processes in the atmosphere. The monitoring section briefly introduces this class of compounds, mainly focusing on the 16 PAHs indicated by the US-EPA as priority pollutants. These compounds undergo partitioning between the gas phase and particulate, which has to be considered in the choice of the sampling methodology. Furthermore, sampling artifacts may arise from further phase transfers inside the sampling device. After sampling, extraction, clean up and detection/quantification procedures will follow. They are closely related since the choice of the extraction technique will heavily condition the clean-up step, and both procedures will place demands on the performance of the detection technique (usually GC-MS or HPLC). This is particularly true in the case of complex samples such as those arising from atmospheric sampling. The sources of atmospheric PAHs are then discussed with a particular focus on receptor models, which can allow the apportionment of PAH sources based on concentration data that can be routinely obtained by pollution control networks.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar/prevenção & controle , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/métodos , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas
8.
Ann Chim ; 94(4): 257-68, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15242091

RESUMO

This paper reviews the transformation processes that polycyclic aromatic hydrocarbons (PAHs) undergo in the atmosphere. These processes can take place both in the gas phase and in the particulate/aerosol one. Among the gas-phase processes, the most important ones are the daytime reaction with *OH and the nighttime reaction with *NO3. The relative importance of the two processes depends on the particular PAH molecule. For instance, gaseous naphthalene is mainly removed from the atmosphere upon reaction with *OH, while gaseous phenanthrene is mainly removed by reaction with *NO3. Oxy-, hydroxy-, and nitro-PAHs are the main transformation intermediates. Reaction with ozone and photolysis play a secondary role in the transformation of gaseous PAHs. The particle-associated processes are usually slower than the gas-phase ones, thus the gas-phase PAHs usually have shorter atmospheric lifetimes than those found on particulate. Due to the higher residence time on particulate when compared with the gas phase, direct or assisted photolysis plays a relevant role in the transformation of particle-associated PAHs. Among the other processes taking place in the condensed phase, nitration plays a very important role due to the health impact of nitro-PAHs, some of them being the most powerful mutagens found so far in atmospheric particulate extracts.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Aerossóis , Monitoramento Ambiental , Radical Hidroxila/química , Oxidantes/química , Oxirredução , Tamanho da Partícula , Fotólise
9.
Ann Chim ; 93(4): 389-96, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12817638

RESUMO

The carbonaceous component in the Milan urban particulate matter, i.e. the two components black carbon (BC) and organic carbon (OC), has been measured by means of a thermogravimetric analyzer combined with an infrared spectrophotometer (TGA/FT-IR). While black carbon may be considered a primary pollutant, organic carbon includes both primary emissions and secondary organic aerosols. Since carbonaceous aerosol (including a small quantity of inorganic carbon, too) makes up roughly from 25% to 50% of the average annual PM 2.5 mass concentration, a deeper understanding of this component is required. The TGA/FT-IR technique, employed for the first time to our knowledge for the quantification of the particulate matter carbonaceous component, allows, thought the results here presented are preliminary, to assess the two components BC and OC in a simple way especially if compared with the methods reported in the literature. The total carbon (TC) determinations performed by TGA/FT-IR on Milan urban particulate matter are in good agreement with the results obtained by a total organic carbon (TOC) analyzer operating directly on the solid sample.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Compostos Orgânicos/análise , Aerossóis , Calibragem , Itália , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Saúde da População Urbana
10.
Ann Chim ; 93(4): 447-56, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12817645

RESUMO

The model BAGS (Boxmodel for Aerosol and Gasphase Simulations) has been developed. It is composed of two major modules: the first one describes the system of the chemical reactions in the gaseous phase, the second one calculates the aerosol chemical composition and the dimensional distribution of the particles. The boxmodel has been developed with the introduction of new chemical and physical processes, not previously included, in particular the formation of Secondary Organic Aerosol. The other implemented processes are a module for the dynamic of the particle population, nucleation, coagulation and dry deposition. The last phase of the work has been a check of the BAGS capabilities by a series of tests, that have permitted to compare it with other models (MAPS and MADM). The tests in particular have concerned the aerosol water content prediction, the photochemistry, the condensation of the inorganic compounds and the formation of Secondary Organic Aerosol.


Assuntos
Poluentes Atmosféricos/química , Atmosfera/análise , Modelos Químicos , Oxidantes Fotoquímicos/química , Aerossóis , Tamanho da Partícula
11.
Sci Total Environ ; 473-474: 451-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24388823

RESUMO

Black carbon (BC) is an important component of particulate matter due to its effects on human health and climate. In this study, we present the first BC concentrations measured in the Istanbul megacity (~15 million inhabitants). Two measurement campaigns have been conducted to measure BC and fine particulate matter (PM2.5) concentrations at four locations, characterized by different traffic densities. In the first campaign, BC daily mean concentrations have been found to be between 4 µg/m(3) and 10 µg/m(3). In the second campaign, BC and PM2.5 have been measured at the site with the highest traffic density for an entire year. Annually averaged BC contributes by 38 ± 14% to the PM2.5 levels (annual average BC: 13 µg/m(3) and PM2.5: 36 µg/m(3)). Diurnal variations of BC concentrations followed those of traffic density (correlation coefficient of 0.87). These measurements are essential to identify the sources of BC and PM2.5 concentrations in Istanbul and develop mitigation measures.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Fuligem/análise , Poluição do Ar/estatística & dados numéricos , Cidades , Turquia
12.
Environ Health Perspect ; 120(6): 831-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22418651

RESUMO

BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM(2.5) and ozone using two composition-climate models, and calculated associated changes in premature PM(2.5)- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM(2.5) and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM(2.5) relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.


Assuntos
Poluição do Ar/prevenção & controle , Mudança Climática , Exposição Ambiental , Metano/análise , Ozônio/análise , Material Particulado/análise , Saúde Pública/estatística & dados numéricos , Simulação por Computador , Humanos , Metano/efeitos adversos , Modelos Teóricos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Fuligem
13.
Science ; 335(6065): 183-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22246768

RESUMO

Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Mudança Climática , Abastecimento de Alimentos , Saúde , Metano , Ozônio , Fuligem , Aerossóis , Poluentes Atmosféricos/análise , Simulação por Computador , Análise Custo-Benefício , Humanos , Metano/análise , Mortalidade Prematura , Ozônio/análise , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa