Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rock Mech Rock Eng ; 53(12): 5531-5543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239836

RESUMO

In this paper, an empirical relationship between the Unconfined Compressive Strength (UCS) of intact rock and the unit shaft resistance of piles penetrating rock is investigated. A growing number of civil engineering projects are utilizing steel piles driven into rock where a significant portion of the pile capacity is derived from the shaft resistance. Despite the growing number of projects utilizing the technology, little to no guidance is offered in the literature as to how the shaft resistance is to be calculated for such piles. A database has been created for driven piles that penetrate bedrock. The database consists of 42 pile load tests of which a majority are steel H-piles. The friction fatigue model is applied to seven of the pile load tests for which sufficient UCS data exists in order to develop an empirical relation. The focus of this paper is on case histories that include driven pipe piles with at least 2 m penetration into rock.

2.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174260

RESUMO

A vibration-based bridge scour detection procedure using a cantilever-based piezoelectric energy harvesting device (EHD) is proposed here. This has an advantage over an accelerometer-based method in that potentially, the requirement for a power source can be negated with the only power requirement being the storage and/or transmission of the data. Ideally, this source of power could be fulfilled by the EHD itself, although much research is currently being done to explore this. The open-circuit EHD voltage is used here to detect bridge frequency shifts arising due to scour. Using one EHD attached to the central bridge pier, both scour at the pier of installation and scour at another bridge pier can be detected from the EHD voltage generated during the bridge free-vibration stage, while the harvester is attached to a healthy pier. The method would work best with an initial modal analysis of the bridge structure in order to identify frequencies that may be sensitive to scour. Frequency components corresponding to harmonic loading and electrical interference arising from experiments are removed using the filter bank property of singular spectrum analysis (SSA). These frequencies can then be monitored by using harvested voltage from the energy harvesting device and successfully utilised towards structural health monitoring of a model bridge affected by scour.


Assuntos
Desenho de Equipamento/métodos , Monitorização Fisiológica/métodos , Vibração , Acelerometria/métodos , Simulação por Computador , Fontes de Energia Elétrica , Humanos , Fenômenos Físicos , Transdutores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa