Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 31(6): 1362-1372, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28856773

RESUMO

Political transitions often trigger substantial environmental changes. In particular, deforestation can result from the complex interplay among the components of a system-actors, institutions, and existing policies-adapting to new opportunities. A dynamic conceptual map of system components is particularly useful for systems in which multiple actors, each with different worldviews and motivations, may be simultaneously trying to alter different facets of the system, unaware of the impacts on other components. In Myanmar, a global biodiversity hotspot with the largest forest area in mainland Southeast Asia, ongoing political and economic reforms are likely to change the dynamics of deforestation drivers. A fundamental conceptual map of these dynamics is therefore a prerequisite for interventions to reduce deforestation. We used a system-dynamics approach and causal-network analysis to determine the proximate causes and underlying drivers of forest loss and degradation in Myanmar from 1995 to 2016 and to articulate the linkages among them. Proximate causes included infrastructure development, timber extraction, and agricultural expansion. These were stimulated primarily by formal agricultural, logging, mining, and hydropower concessions and economic investment and social issues relating to civil war and land tenure. Reform of land laws, the link between natural resource extraction and civil war, and the allocation of agricultural concessions will influence the extent of future forest loss and degradation in Myanmar. The causal-network analysis identified priority areas for policy interventions, for example, creating a public registry of land-concession holders to deter corruption in concession allocation. We recommend application of this analytical approach to other countries, particularly those undergoing political transition, to inform policy interventions to reduce forest loss and degradation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores , Mianmar , Política
2.
Conserv Biol ; 31(6): 1257-1270, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030915

RESUMO

Political and economic transitions have had substantial impacts on forest conservation. Where transitions are underway or anticipated, historical precedent and methods for systematically assessing future trends should be used to anticipate likely threats to forest conservation and design appropriate and prescient policy measures to counteract them. Myanmar is transitioning from an authoritarian, centralized state with a highly regulated economy to a more decentralized and economically liberal democracy and is working to end a long-running civil war. With these transitions in mind, we used a horizon-scanning approach to assess the 40 emerging issues most affecting Myanmar's forests, including internal conflict, land-tenure insecurity, large-scale agricultural development, demise of state timber enterprises, shortfalls in government revenue and capacity, and opening of new deforestation frontiers with new roads, mines, and hydroelectric dams. Averting these threats will require, for example, overhauling governance models, building capacity, improving infrastructure- and energy-project planning, and reforming land-tenure and environmental-protection laws. Although challenges to conservation in Myanmar are daunting, the political transition offers an opportunity for conservationists and researchers to help shape a future that enhances Myanmar's social, economic, and environmental potential while learning and applying lessons from other countries. Our approach and results are relevant to other countries undergoing similar transitions.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Agricultura Florestal/legislação & jurisprudência , Florestas , Política , Biodiversidade , Mianmar
3.
Glob Chang Biol ; 21(4): 1531-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25175402

RESUMO

Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations.


Assuntos
Agricultura , Arecaceae , Biodiversidade , Conservação dos Recursos Naturais , Insetos/fisiologia , Vertebrados/fisiologia , Animais , Colômbia
4.
Proc Natl Acad Sci U S A ; 109(12): 4527-31, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22393004

RESUMO

The late Quaternary period saw the rapid extinction of the majority of the world's terrestrial megafauna. The cause of these dramatic losses, especially the relative importance of climatic change and the impacts of newly arrived people, remains highly controversial, with geographically restricted analyses generating conflicting conclusions. By analyzing the distribution and timing of all megafaunal extinctions in relation to climatic variables and human arrival on five landmasses, we demonstrate that the observed pattern of extinctions is best explained by models that combine both human arrival and climatic variables. Our conclusions are robust to uncertainties in climate data and in the dates of megafaunal extinctions and human arrival on different landmasses, and strongly suggest that these extinctions were driven by both anthropogenic and climatic factors.


Assuntos
Extinção Biológica , Clima , Mudança Climática , Humanos , Paleontologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Fatores de Tempo
5.
Ambio ; 50(1): 215-228, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32152906

RESUMO

Analysing the drivers of deforestation and forest degradation in conservation landscapes can provide crucial information for conservation management. While rates of forest loss can be measured through remote sensing, on the ground information is needed to confirm the commodities and actors behind deforestation. We administered a questionnaire to Wildlife Conservation Society's landscape managers to assess the deforestation drivers in 28 tropical conservation landscapes. Commercial and subsistence agriculture were the main drivers of deforestation, followed by settlement expansion and infrastructure development. Rice, rubber, cassava and maize were the crops most frequently cited as drivers of deforestation in these emblematic conservation landscapes. Landscape managers expected deforestation trends to continue at similar or greater magnitude in the future, calling for urgent measures to mitigate these trends.


Assuntos
Conservação dos Recursos Naturais , Florestas , Agricultura , Árvores , Clima Tropical
6.
Sci Rep ; 8(1): 16558, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409993

RESUMO

Effective conservation planning needs to consider the threats of cropland expansion to biodiversity. We used Myanmar as a case study to devise a modeling framework to identify which Key Biodiversity Areas (KBAs) are most vulnerable to cropland expansion in a context of increasingly resolved armed conflict. We studied 13 major crops with the potential to expand into KBAs. We used mixed-effects models and an agricultural versus forest rent framework to model current land use and conversion of forests to cropland for each crop. We found that the current cropland distribution is explained by higher agricultural value, lower transportation costs and lower elevation. We also found that protected areas and socio-political instability are effective in slowing down deforestation with conflicts in Myanmar damaging farmland and displacing farmers elsewhere. Under plausible economic development and socio-political stability scenarios, the models forecast 48.5% of land to be converted. We identified export crops such as maize, and pigeon pea as key deforestation drivers. This cropland expansion would pose a major threat to Myanmar's freshwater KBAs. We highlight the importance of considering rapid land-use transitions in the tropics to devise robust conservation plans.


Assuntos
Agricultura/legislação & jurisprudência , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Biodiversidade , Produtos Agrícolas/classificação , Desenvolvimento Econômico , Florestas , Modelos Teóricos , Mianmar
7.
Ecol Evol ; 5(10): 1944-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26045947

RESUMO

The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four-hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species-rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa