RESUMO
Pregnant women are daily exposed to environmental contaminants, including endocrine disruptors that can impact the offspring's health. This study aimed to evaluate the effects of maternal oral exposure to a mixture of contaminants at a dose mimicking women's exposure, during folliculogenesis and/or preimplantation period (FED and ED groups, respectively) on the fetoplacental phenotype in a rabbit model. The mixture (DEHP, pp'DDE, ß-HCH, HCB, BDE-47, BPS, PFOS, PFOA) was defined based on data from HELIX and INMA cohorts. FED and ED females or unexposed females (control) were inseminated, their embryos were collected and transferred to unexposed control recipient rabbits at 80 h post-insemination. The effects of maternal FED and ED exposure were evaluated on fetoplacental growth and development by ultrasound, fetoplacental biometry, fetal metabolism, placental structure and function. The results demonstrated that the mixture weakly affected ultrasound measurements, as only placental volume increased significantly in FED vs ED. Analysis of placental structure demonstrated that the volume fraction of the maternal blood space was increased in FED vs control. Pre- and/or periconception exposure did not affect biometric at the end of gestation, but affected FED fetal biochemistry. Plasma triglyceride concentration was reduced compared to control. However, total cholesterol, urea, ASAT and ALAT in fetal blood were affected in both exposed groups. Multiple factor analysis, including biometric, biochemical, and stereological datasets, indicated that the three groups were significantly different. Additionally, several placental genes were differentially expressed between groups, compared two by two, in a sex-specific manner, with more difference in females than in males. The differentially expressed genes were involved in lipid, cholesterol, and drug/xenobiotic metabolism in both sexes. These results indicate that maternal exposure to environmental contaminants during crucial developmental windows only mildly impaired fetoplacental development but disturbed fetal blood biochemistry and placental gene expression with potential long-term effects on offspring phenotype.
RESUMO
BACKGROUND: A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES: We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS: Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS: In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS: dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Assuntos
Oncorhynchus mykiss , Animais , Dieta/veterinária , Dieta com Restrição de Proteínas , Carboidratos da Dieta/farmacologia , Fígado/metabolismo , Masculino , FenótipoRESUMO
BACKGROUND: Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis. RESULTS: The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. CONCLUSIONS: These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention.
Assuntos
Metilação de DNA , Genômica , Espermatozoides/metabolismo , Animais , Bovinos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Especificidade da EspécieRESUMO
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Assuntos
Feto , Lipopolissacarídeos , Fígado , Pulmão , Placenta , Feminino , Gravidez , Placenta/metabolismo , Placenta/imunologia , Animais , Feto/imunologia , Feto/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Fígado/metabolismo , Fígado/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Adaptação Fisiológica/imunologia , Desenvolvimento Fetal/imunologia , Troca Materno-Fetal/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologiaRESUMO
Context and Aim: Lipid overnutrition in female rabbits, from prepuberty, leads to impaired metabolism (dyslipidemia and increased adiposity) and follicular atresia, and, when continued during gestation, affects offspring phenotype with intrauterine growth retardation (IUGR) and leads to placental and lipid metabolism abnormalities. Growth retardation is already observed in embryo stage, indicating a possible implication of periconceptional exposure. The objective of this study was to discriminate the effects of preconception and gestational exposures on feto-placental development. Materials and Methods: Rabbit 1-day zygotes were collected from female donors under control (CD) or high-fat-high-cholesterol (HD) diet and surgically transferred to the left and right uterus, respectively, of each H (n = 6) or C (n = 7) synchronized recipients. Close to term, four combinations, CC (n = 10), CH (n = 13), HC (n = 13), and HH (n = 6), of feto-placental units were collected, for biometry analyses. Fatty acid (FA) profiles were determined in placental labyrinth, decidua, fetal plasma, and fetal liver by gas chromatography and explored further by principal component analysis (PCA). Candidate gene expression was also analyzed by RT-qPCR in the placenta and fetal liver. Data were analyzed by Kruskal-Wallis followed by Dunn's pairwise comparison test. Combinations of different data sets were combined and explored by multifactorial analysis (MFA). Results: Compared to controls, HH fetuses were hypotrophic with reduced placental efficiency and altered organogenesis, CH presented heavier placenta but less efficient, whereas HC presented a normal biometry. However, the MFA resulted in a good separation of the four groups, discriminating the effects of each period of exposure. HD during gestation led to reduced gene expression (nutrient transport and metabolism) and big changes in FA profiles in both tissues with increased membrane linoleic acid, lipid storage, and polyunsaturated-to-saturated FA ratios. Pre-conception exposure had a major effect on fetal biometry and organogenesis in HH, with specific changes in FA profiles (increased MUFAs and decreased LCPUFAs). Conclusion: Embryo origin left traces in end-gestation feto-placental unit; however, maternal diet during gestation played a major role, either negative (HD) or positive (control). Thus, an H embryo developed favorably when transferred to a C recipient (HC) with normal biometry at term, despite disturbed and altered FA profiles.
RESUMO
Phenotypic plasticity is a key component of the ability of organisms to respond to changing environmental conditions. In this study, we aimed to study the establishment of DNA methylation marks in response to an environmental stress in rainbow trout and to assess whether these marks depend on the genetic background. The environmental stress chosen here was temperature, a known induction factor of epigenetic marks in fish. To disentangle the role of epigenetic mechanisms such as DNA methylation in generating phenotypic variations, nine rainbow trout isogenic lines with no genetic variability within a line were used. For each line, half of the eggs were incubated at standard temperature (11°C) and the other half at high temperature (16°C), from eyed-stage to hatching. In order to gain a first insight into the establishment of DNA methylation marks in response to an early temperature regime (control 11°C vs. heated 16°C), we have studied the expression of 8 dnmt3 (DNA methyltransferase) genes, potentially involved in de novo methylation, and analysed global DNA methylation in the different rainbow trout isogenic lines using LUMA (LUminometric Methylation Assay). Finally, finer investigation of genome-wide methylation patterns was performed using EpiRADseq, a reduced-representation library approach based on the ddRADseq (Double Digest Restriction Associated DNA) protocol, for six rainbow trout isogenic lines. We have demonstrated that thermal history during embryonic development alters patterns of DNA methylation, but to a greater or lesser extent depending on the genetic background.
Assuntos
Oncorhynchus mykiss , Animais , Metilação de DNA , Desenvolvimento Embrionário , Patrimônio Genético , TemperaturaRESUMO
Foals born to primiparous mares are lighter and less mature than those born to multiparous dams. Factors driving this difference are not totally understood. Using 7 multiparous and 6 primiparous standardbred mares, we demonstrated that, in late gestation, primiparous mares were less insulin resistant compared to multiparous mares, and that their foals had reduced plasma amino-acid concentrations at birth compared to foals born to multiparous mares. Vascular development, as observed through structure and gene expression, and global DNA methylation were also reduced in primiparous placentas. Another group of 8 primiparous mares was orally supplemented with L-arginine (100 g/day, 210d to term). L-arginine improved pregnancy-induced insulin resistance and increased maternal L-arginine and L-ornithine plasma concentrations but foal plasma amino acid concentrations were not affected at birth. At birth, foal weight and placental biometry, structure, ultra-structure and DNA methylation were not modified. Placental expression of genes involved in glucose and fatty acid transfers was increased. In conclusion, maternal insulin resistance in response to pregnancy and placental function are reduced in primiparous pregnancies. Late-gestation L-arginine supplementation may help primiparous mares to metabolically adapt to pregnancy and improve placental function. More work is needed to confirm these effects and ascertain optimal treatment conditions.
Assuntos
Arginina/farmacologia , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cavalos , Placenta/metabolismo , Gravidez/metabolismo , Animais , Feminino , Resistência à Insulina/fisiologia , Placenta/irrigação sanguíneaRESUMO
BACKGROUND: Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. RESULTS: Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB females presented fetal growth restriction (FGR; -13 %) and 28 % of the fetuses were small for gestational age (SGA). Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32 metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset of these genes was normalized. CONCLUSIONS: This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth, but some effects of previous obesity were retained in offspring phenotype.
Assuntos
Epigênese Genética/genética , Desenvolvimento Fetal/genética , Obesidade/complicações , Complicações na Gravidez/genética , Redução de Peso/genética , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Histonas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/fisiopatologia , Placenta/metabolismo , Gravidez , Complicações na Gravidez/fisiopatologia , Redução de Peso/fisiologiaRESUMO
Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.