Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Renal Physiol ; 318(1): F148-F159, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608671

RESUMO

Reduced nitric oxide (NO) and a decrease in cGMP signaling mediated by soluble guanylate cyclase (sGC) has been linked to the development of several cardiorenal diseases. Stimulation of sGC is a potential means for enhancing cGMP production in conditions of reduced NO bioavailability. The purpose of our studies was to determine the effects of praliciguat, a clinical-stage sGC stimulator, in a model of cardiorenal failure. Dahl salt-sensitive rats fed a high-salt diet to induce hypertension and organ damage were treated with the sGC stimulator praliciguat to determine its effects on hemodynamics, biomarkers of inflammation, fibrosis, tissue function, and organ damage. Praliciguat treatment reduced blood pressure, improved cardiorenal damage, and attenuated the increase in circulating markers of inflammation and fibrosis. Notably, praliciguat affected markers of renal damage at a dose that had minimal effect on blood pressure. In addition, liver fibrosis and circulating markers of tissue damage were attenuated in praliciguat-treated rats. Stimulation of the NO-sGC-cGMP pathway by praliciguat attenuated or normalized indicators of chronic inflammation, fibrosis, and tissue dysfunction in the Dahl salt-sensitive rat model. Stimulation of sGC by praliciguat may present an effective mechanism for treating diseases linked to NO deficiency, particularly those associated with cardiac and renal failure. Praliciguat is currently being evaluated in patients with diabetic nephropathy and heart failure with preserved ejection fraction.


Assuntos
Fibrose/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Insuficiência Renal/tratamento farmacológico , Animais , Biomarcadores/sangue , Pressão Sanguínea/efeitos dos fármacos , Quimiocina CCL2/sangue , GMP Cíclico/metabolismo , Fibrose/patologia , Agonistas da Guanilil Ciclase C/uso terapêutico , Inflamação/patologia , Rim/patologia , Masculino , Peptídeo Natriurético Encefálico/sangue , Óxido Nítrico/metabolismo , Osteopontina/sangue , Fragmentos de Peptídeos/sangue , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Insuficiência Renal/patologia , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Inibidor Tecidual de Metaloproteinase-1/sangue
2.
Am J Physiol Renal Physiol ; 319(4): F697-F711, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865013

RESUMO

Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy. Praliciguat monotherapy did not affect hemodynamics. In contrast, enalapril monotherapy lowered blood pressure but did not attenuate proteinuria. Renal expression of genes in pathways involved in inflammation, fibrosis, oxidative stress, and kidney injury was lower in praliciguat-treated obese ZSF1 rats than in obese control rats; fasting glucose and cholesterol were also lower with praliciguat treatment. To gain insight into how tubular mechanisms might contribute to its pharmacological effects on the kidneys, we studied the effects of praliciguat on pathological processes and signaling pathways in cultured human primary renal proximal tubular epithelial cells (RPTCs). Praliciguat inhibited the expression of proinflammatory cytokines and secretion of monocyte chemoattractant protein-1 in tumor necrosis factor-α-challenged RPTCs. Praliciguat treatment also attenuated transforming growth factor-ß-mediated apoptosis, changes to a mesenchyme-like cellular phenotype, and phosphorylation of SMAD3 in RPTCs. In conclusion, praliciguat improved proteinuria in the ZSF1 rat model of diabetic nephropathy, and its actions in human RPTCs suggest that tubular effects may contribute to its renal benefits, building upon strong evidence for the role of cGMP signaling in renal health.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Nefrite/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Enalapril/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Nefrite/metabolismo , Nefrite/patologia , Fosforilação , Ratos Zucker , Transdução de Sinais , Proteína Smad3/metabolismo
3.
Artif Organs ; 41(6): 579-585, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27862079

RESUMO

Treatment for end-stage liver failure is restricted by the critical shortage of donor organs; about 4000 people die in the USA while waiting for a transplantable organ. This situation has been a major driving force behind the rise of tissue engineering to build artificial tissues/organs. Recent advancements in creating transplantable liver grafts using decellularized liver scaffolds bring the field closer to clinical translation. However, a source of readily available and highly functional adult hepatocytes in adequate numbers for regenerative liver therapies still remains unclear. Here, we describe a new method to utilize discarded livers to make transplantable new liver grafts. We show that marginal donor livers damaged due to warm ischemia could be treated with machine perfusion to yield 39 million viable hepatocytes per gram of liver, similar to fresh livers, and these cells could be used to repopulate decellularized liver matrix (DLM) scaffolds to make transplantable liver grafts. The hepatocytes from recovered livers sustained their characteristic epithelial morphology while they exhibited slightly lower protein synthesis functions both in plate cultures and in recellularized liver grafts. The dampened protein synthesis was attributed to residual endoplasmic reticulum stress found in recovered cells. The results here represent a unique approach to reengineer transplantable liver grafts solely from discarded organs.


Assuntos
Hepatócitos/citologia , Regeneração Hepática , Fígado/fisiologia , Engenharia Tecidual/métodos , Animais , Separação Celular , Células Cultivadas , Matriz Extracelular/química , Fígado/química , Fígado/citologia , Perfusão , Ratos , Alicerces Teciduais/química
4.
Front Pharmacol ; 11: 419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322204

RESUMO

Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.

5.
J Am Chem Soc ; 130(21): 6664-5, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18454530

RESUMO

This work describes a method to bond patterned macromolecular gels into monolithic structures using perturbants. Bonding strengths for a variety of solutes follow a Hofmeister ordering; this result and optical measurements indicate that bonding occurs by reversible perturbation of contacting gels. The resulting microfluidic gels are mechanically robust and can serve as scaffolds for cell culture.


Assuntos
Hidrogéis/química , Substâncias Macromoleculares/química , Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Humanos , Peso Molecular , Soluções
6.
Microvasc Res ; 76(1): 46-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18440562

RESUMO

This work examines the effect of cyclic AMP (cAMP) on the in vitro barrier function of tubes of human dermal lymphatic microvascular endothelial cells (LECs). Under baseline conditions, the barrier function of LEC tubes was weak, with diffusional permeability coefficients to bovine serum albumin and 10 kDa dextran of 1.4(-0.6)(+0.9)x10(-6) cm/s and 1.7(-0.5)(+0.8)x10(-6) cm/s (geometric mean+/-95% CI), respectively, and 1.2+/-0.5 (mean+/-95% CI) focal leaks per mm. Exposure to low concentrations (3 microM) of a cell-permeant analog of cAMP did not alter the barrier function. Exposure to higher concentrations (80 and 400 microM) and/or the phosphodiesterase inhibitor Ro-20-1724 (20 microM) lowered permeabilities and the number of focal leaks, and increased the selectivity of the barrier. Decreased permeabilities were accompanied by an increase in continuous VE-cadherin staining at cell-cell borders. Exposure to 1 mM 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, did not increase permeabilities. LECs expressed the lymphatic-specific master transcription factor Prox-1, regardless of whether barrier function was weak or strong. Our results indicate that the permeability of LEC tubes in vitro responds to cAMP in a manner similar to that well-described for the permeability of blood microvessels.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , AMP Cíclico/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio Linfático/efeitos dos fármacos , 4-(3-Butoxi-4-metoxibenzil)-2-imidazolidinona/farmacologia , Inibidores de Adenilil Ciclases , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Bucladesina/farmacologia , Caderinas/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , AMP Cíclico/análogos & derivados , Dextranos/metabolismo , Didesoxiadenosina/análogos & derivados , Didesoxiadenosina/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Homeodomínio/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Soroalbumina Bovina/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Engenharia Tecidual/métodos , Proteínas Supressoras de Tumor/metabolismo , Proteína da Zônula de Oclusão-1
7.
J Biomed Mater Res A ; 106(1): 106-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28879690

RESUMO

In vivo, tissues are drained of excess fluid and macromolecules by the lymphatic vascular system. How to engineer artificial lymphatics that can provide equivalent drainage in biomaterials remains an open question. This study elucidates design principles for engineered lymphatics, by comparing the rates of removal of fluid and solute through type I collagen gels that contain lymphatic vessels or unseeded channels, or through gels without channels. Surprisingly, no difference was found between the fluid drainage rates for gels that contained vessels or bare channels. Moreover, solute drainage rates were greater in collagen gels that contained lymphatic vessels than in those that had bare channels. The enhancement of solute drainage by lymphatic endothelium was more pronounced in longer scaffolds and with smaller solutes. Whole-scaffold imaging revealed that endothelialization aided in solute drainage by impeding solute reflux into the gel without hindering solute entry into the vessel lumen. These results were reproduced by computational models of drainage with a flow-dependent endothelial hydraulic conductivity. This study shows that endothelialization of bare channels does not impede the drainage of fluid from collagen gels and can increase the drainage of macromolecules by preventing solute transport back into the scaffold. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 106-114, 2018.


Assuntos
Colágeno Tipo I/química , Drenagem/métodos , Vasos Linfáticos , Soluções/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Células Cultivadas , Simulação por Computador , Dextranos/química , Endotélio Linfático , Corantes Fluorescentes/química , Géis , Humanos , Soroalbumina Bovina/química , Engenharia Tecidual
8.
Genetics ; 174(2): 555-73, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16816432

RESUMO

RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.


Assuntos
DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Dano ao DNA/genética , DNA Helicases/genética , Reparo do DNA/genética , DNA Topoisomerases Tipo I/biossíntese , Genes Letais , Mapeamento de Interação de Proteínas , RecQ Helicases/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Transdução de Sinais/genética
9.
Cell Mol Bioeng ; 9(1): 73-84, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27110295

RESUMO

Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 µm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-µm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within three days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels.

10.
Genetics ; 162(2): 647-62, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12399378

RESUMO

In budding yeast, loss of topoisomerase III, encoded by the TOP3 gene, leads to a genomic instability phenotype that includes slow growth, hyper-sensitivity to genotoxic agents, mitotic hyper-recombination, increased chromosome missegregation, and meiotic failure. Slow growth and other defects of top3 mutants are suppressed by mutation of SGS1, which encodes the only RecQ helicase in S. cerevisiae. sgs1 is epistatic to top3, suggesting that the two proteins act in the same pathway. To identify other factors that function in the Sgs1-Top3 pathway, we undertook a genetic screen for non-sgs1 suppressors of top3 defects. We found that slow growth and DNA damage sensitivity of top3 mutants are suppressed by mutations in RAD51, RAD54, RAD55, and RAD57. In contrast, top3 mutants show extreme synergistic growth defects with mutations in RAD50, MRE11, XRS2, RDH54, and RAD1. We also analyzed recombination at the SUP4-o region, showing that in a rad51, rad54, rad55, or rad57 background top3Delta does not increase recombination to the same degree as in a wild-type strain. These results suggest that the presence of the Rad51 homologous recombination complex in a top3 background facilitates creation of detrimental intermediates by Sgs1. We present a model wherein Rad51 helps recruit Sgs1-Top3 to sites of replicative damage.


Assuntos
DNA Topoisomerases Tipo I/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA , DNA Topoisomerases , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA , RecQ Helicases , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell Med ; 4(3): 109-123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25431743

RESUMO

The scarcity of viable hepatocytes is a significant bottleneck in cell transplantation, drug discovery, toxicology, tissue engineering, and bioartificial assist devices, where trillions of high-functioning hepatocytes are needed annually. We took the novel approach of using machine perfusion to maximize cell recovery, specifically from uncontrolled cardiac death donors, the largest source of disqualified donor organs. In a rat model, we developed a simple 3 hour room temperature (20±2°C) machine perfusion protocol to treat non-premedicated livers exposed to 1 hour of warm (34°C) ischemia. Treated ischemic livers were compared to fresh, fresh-treated and untreated ischemic livers using viable hepatocyte yields and in vitro performance as quantitative endpoints. Perfusion treatment resulted in both a 25-fold increase in viable hepatocytes from ischemic livers, and a 40% increase from fresh livers. While cell morphology and function in suspension and plate cultures of untreated warm ischemic cells was significantly impaired, treated warm ischemic cells were indistinguishable from fresh hepatocytes. Further, a strong linear correlation between tissue ATP and cell yield enabled accurate evaluation of the extent of perfusion recovery. Maximal recovery of warm ischemic liver ATP content appears to be correlated with optimal flow through the microvasculature. These data demonstrate that the inclusion of a simple perfusion-preconditioning step can significantly increase the efficiency of functional hepatocyte yields and the number of donor livers that can be gainfully utilized.

12.
Ann Biomed Eng ; 40(9): 1851-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22484829

RESUMO

Gene delivery to primary hepatocytes is an important tool for a number of applications including the study of liver cell biology and pathology, drug screening, and gene therapy. Robust transfection of primary hepatocytes, however, is significantly more difficult to achieve than in cell lines or readily dividing primary cells. In this report, we investigated in vitro gene delivery to both primary rat hepatocytes and Huh7.5.1 cells (a hepatoma cell line) using a number of viral and non-viral methods, including Lipofectamine 2000, FuGene HD, Nucleofection, Magnetofection, and lentiviruses. Our results showed that Lipofectamine 2000 is the most efficient reagent for green fluorescent protein (GFP) gene delivery to primary rat hepatocytes (33.3 ± 1.8% transfection efficiency) with minimal adverse effect on several hepatic functions, such as urea and albumin secretion. The lentiviral vectors used in this study exhibited undetectable gene delivery to primary rat hepatocytes but significant delivery to Huh7.5.1 cells (>80% transfection efficiency). In addition, we demonstrated lentiviral-based and spatially defined delivery of the GFP gene to Huh7.5.1 cells for use in biological microelectromechanical systems.


Assuntos
Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Hepatócitos/metabolismo , Lentivirus/genética , Transfecção/métodos , Albuminas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos , Fenômenos Magnéticos , Ratos , Ratos Endogâmicos Lew , Ureia/metabolismo
13.
Methods Mol Biol ; 671: 281-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20967637

RESUMO

This chapter describes a protocol for forming open endothelial tubes in vitro and quantifying their permeability to macromolecules. These tubes consist of confluent monolayers of human microvascular endothelial cells in perfused microfluidic collagen gels. The cylindrical geometry of the tubes mimics the shape of microvessels in vivo; it allows simultaneous and/or repeated measurements of permeability coefficients and detection of focal leaks. We have used these in vitro models to test the effects of agonists on microvascular permeability and are developing arrays of microvascular tubes to enable large-scale testing.


Assuntos
Prótese Vascular , Permeabilidade Capilar , Colágeno/química , Endotélio Vascular/citologia , Microvasos/citologia , Engenharia Tecidual/métodos , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Desenho de Equipamento , Humanos , Microvasos/metabolismo , Engenharia Tecidual/instrumentação
14.
J Vis Exp ; (48)2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21339718

RESUMO

The liver is a complex organ which requires constant perfusion for delivery of nutrients and oxygen and removal of waste in order to survive. Efforts to recreate or mimic the liver microstructure with grounds up approach using tissue engineering and microfabrication techniques have not been successful so far due to this design challenge. In addition, synthetic biomaterials used to create scaffolds for liver tissue engineering applications have been limited in inducing tissue regeneration and repair in large part due to the lack of specific cell binding motifs that would induce the proper cell functions. Decellularized native tissues such blood vessels and skin on the other hand have found many applications in tissue engineering, and have provided a practical solution to some of the challenges. The advantage of decellularized native matrix is that it retains, to an extent, the original composition, and the microstructure, hence enhancing cell attachment and reorganization. In this work we describe the methods to perform perfusion-decellularization of the liver, such that an intact liver bioscaffold that retains the structure of major blood vessels is obtained. Further, we describe methods to recellularize these bioscaffolds with adult primary hepatocytes, creating a liver graft that is functional in vitro, and has the vessel access necessary for transplantation in vivo.


Assuntos
Fígado/irrigação sanguínea , Perfusão/métodos , Animais , Fígado/citologia , Circulação Hepática , Transplante de Fígado , Ratos , Engenharia Tecidual/métodos
15.
Biomaterials ; 31(24): 6182-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20537705

RESUMO

This work examines how mechanical signals affect the barrier function and stability of engineered human microvessels in microfluidic type I collagen gels. Constructs that were exposed to chronic low flow displayed high permeabilities to bovine serum albumin and 10 kDa dextran, numerous focal leaks, low size selectivity, and short lifespan of less than one week. Higher flows promoted barrier function and increased longevity; at the highest flows, the barrier function rivaled that observed in vivo, and all vessels survived to day 14. By studying the physiology of microvessels of different geometries, we established that shear stress and transmural pressure were the dominant mechanical signals that regulated barrier function and vascular stability, respectively. In microvessels that were exposed to high flow, elevation of intracellular cyclic AMP further increased the selectivity of the barrier and strongly suppressed cell proliferation. Computational models that incorporated stress dependence successfully predicted vascular phenotype. Our results indicate that the mechanical microenvironment plays a major role in the functionality and stability of engineered human microvessels in microfluidic collagen gels.


Assuntos
Colágeno/farmacologia , Géis/farmacologia , Microfluídica/métodos , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Estresse Mecânico , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , AMP Cíclico/metabolismo , Hemorreologia/efeitos dos fármacos , Humanos , Microvasos/crescimento & desenvolvimento , Fenótipo , Pressão , Fatores de Tempo
16.
Biomaterials ; 30(26): 4435-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19481796

RESUMO

This computational study analyzes how to design a drainage system for porous scaffolds so that the scaffolds can be vascularized and perfused without collapse of the vessel lumens. We postulate that vascular transmural pressure--the difference between lumenal and interstitial pressures--must exceed a threshold value to avoid collapse. Model geometries consisted of hexagonal arrays of open channels in an isotropic scaffold, in which a small subset of channels was selected for drainage. Fluid flow through the vessels and drainage channel, across the vascular wall, and through the scaffold were governed by Navier-Stokes equations, Starling's Law of Filtration, and Darcy's Law, respectively. We found that each drainage channel could maintain a threshold transmural pressure only in nearby vessels, with a radius-of-action dependent on vascular geometry and the hydraulic properties of the vascular wall and scaffold. We illustrate how these results can be applied to microvascular tissue engineering, and suggest that scaffolds be designed with both perfusion and drainage in mind.


Assuntos
Vasos Sanguíneos/fisiologia , Drenagem/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Perfusão , Pressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa