Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0024424, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38780510

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE: Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.


Assuntos
Bacteriocinas , Cisteína , Tiazóis , Tiazóis/metabolismo , Cisteína/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Processamento de Proteína Pós-Traducional , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Clin Proteomics ; 21(1): 23, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481131

RESUMO

BACKGROUND: Human tear protein biomarkers are useful for detecting ocular and systemic diseases. Unfortunately, existing tear film sampling methods (Schirmer strip; SS and microcapillary tube; MCT) have significant drawbacks, such as pain, risk of injury, sampling difficulty, and proteomic disparities between methods. Here, we present an alternative tear protein sampling method using soft contact lenses (SCLs). RESULTS: We optimized the SCL protein sampling in vitro and performed in vivo studies in 6 subjects. Using Etafilcon A SCLs and 4M guanidine-HCl for protein removal, we sampled an average of 60 ± 31 µg of protein per eye. We also performed objective and subjective assessments of all sampling methods. Signs of irritation post-sampling were observed with SS but not with MCT and SCLs. Proteomic analysis by mass spectrometry (MS) revealed that all sampling methods resulted in the detection of abundant tear proteins. However, smaller subsets of unique and shared proteins were identified, particularly for SS and MCT. Additionally, there was no significant intrasubject variation between MCT and SCL sampling. CONCLUSIONS: These experiments demonstrate that SCLs are an accessible tear-sampling method with the potential to surpass current methods in sampling basal tears.

3.
bioRxiv ; 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38654823

RESUMO

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase cassettes, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of structures of Cdc48 affinity purified from lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data reveal new elements of Shp1-Cdc48 binding and support a "hand-over-hand" mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by D2 in substrate translocation/unfolding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa