Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2210929120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068227

RESUMO

Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.


Assuntos
Mitocôndrias , Plasmodium falciparum , Plasmodium falciparum/genética , Acetilcoenzima A/metabolismo , Acetilação , Mitocôndrias/metabolismo , Oxirredutases/metabolismo
2.
EMBO J ; 40(16): e107247, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34031901

RESUMO

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Apicoplastos , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
3.
J Biol Chem ; 298(5): 101897, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398098

RESUMO

In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Malária Falciparum/parasitologia , Malatos/metabolismo , Oxirredutases/metabolismo , Quinonas/metabolismo
4.
Malar J ; 22(1): 56, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788578

RESUMO

BACKGROUND: Spiroindolone and pyrazoleamide antimalarial compounds target Plasmodium falciparum P-type ATPase (PfATP4) and induce disruption of intracellular Na+ homeostasis. Recently, a PfATP4 mutation was discovered that confers resistance to a pyrazoleamide while increasing sensitivity to a spiroindolone. Transcriptomic and metabolic adaptations that underlie this seemingly contradictory response of P. falciparum to sublethal concentrations of each compound were examined to understand the different cellular accommodation to PfATP4 disruptions. METHODS: A genetically engineered P. falciparum Dd2 strain (Dd2A211V) carrying an Ala211Val (A211V) mutation in PfATP4 was used to identify metabolic adaptations associated with the mutation that results in decreased sensitivity to PA21A092 (a pyrazoleamide) and increased sensitivity to KAE609 (a spiroindolone). First, sublethal doses of PA21A092 and KAE609 causing substantial reduction (30-70%) in Dd2A211V parasite replication were identified. Then, at this sublethal dose of PA21A092 (or KAE609), metabolomic and transcriptomic data were collected during the first intraerythrocytic developmental cycle. Finally, the time-resolved data were integrated with a whole-genome metabolic network model of P. falciparum to characterize antimalarial-induced physiological adaptations. RESULTS: Sublethal treatment with PA21A092 caused significant (p < 0.001) alterations in the abundances of 91 Plasmodium gene transcripts, whereas only 21 transcripts were significantly altered due to sublethal treatment with KAE609. In the metabolomic data, a substantial alteration (≥ fourfold) in the abundances of carbohydrate metabolites in the presence of either compound was found. The estimated rates of macromolecule syntheses between the two antimalarial-treated conditions were also comparable, except for the rate of lipid synthesis. A closer examination of parasite metabolism in the presence of either compound indicated statistically significant differences in enzymatic activities associated with synthesis of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. CONCLUSION: The results of this study suggest that malaria parasites activate protein kinases via phospholipid-dependent signalling in response to the ionic perturbation induced by the Na+ homeostasis disruptor PA21A092. Therefore, targeted disruption of phospholipid signalling in PA21A092-resistant parasites could be a means to block the emergence of resistance to PA21A092.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum , Fosfolipídeos/metabolismo , Fosfolipídeos/uso terapêutico
5.
Angew Chem Int Ed Engl ; 62(31): e202304533, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37249408

RESUMO

The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 µM, making it the most effective LPL inhibitor reported to date.


Assuntos
Parasitos , Animais , Humanos , Proteômica , Plasmodium falciparum , Bactérias , Eritrócitos
6.
Antimicrob Agents Chemother ; 66(9): e0041822, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943271

RESUMO

As the malaria parasite becomes resistant to every drug that we develop, the identification and development of novel drug candidates are essential. Many studies have screened compounds designed to target the clinically important blood stages. However, if we are to shrink the malaria map, new drugs that block the transmission of the parasite are needed. Sporozoites are the infective stage of the malaria parasite, transmitted to the mammalian host as mosquitoes probe for blood. Sporozoite motility is critical to their ability to exit the inoculation site and establish infection, and drug-like compounds targeting motility are effective at blocking infection in the rodent malaria model. In this study, we established a moderate-throughput motility assay for sporozoites of the human malaria parasite Plasmodium falciparum, enabling us to screen the 400 drug-like compounds from the pathogen box provided by the Medicines for Malaria Venture for their activity. Compounds exhibiting inhibitory effects on P. falciparum sporozoite motility were further assessed for transmission-blocking activity and asexual-stage growth. Five compounds had a significant inhibitory effect on P. falciparum sporozoite motility in the nanomolar range. Using membrane feeding assays, we demonstrate that four of these compounds had inhibitory activity against the transmission of P. falciparum to the mosquito. Interestingly, of the four compounds with inhibitory activity against both transmission stages, three are known kinase inhibitors. Together with a previous study that found that several of these compounds could inhibit asexual blood-stage parasite growth, our findings provide new antimalarial drug candidates that have multistage activity.


Assuntos
Anopheles , Antimaláricos , Malária Falciparum , Malária , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mamíferos , Plasmodium falciparum , Esporozoítos
7.
PLoS Pathog ; 16(2): e1008316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059044

RESUMO

Malaria parasites rely on a plastid organelle for survival during the blood stages of infection. However, the entire organelle is dispensable as long as the isoprenoid precursor, isopentenyl pyrophosphate (IPP), is supplemented in the culture medium. We engineered parasites to produce isoprenoid precursors from a mevalonate-dependent pathway, creating a parasite line that replicates normally after the loss of the apicoplast organelle. We show that carbon-labeled mevalonate is specifically incorporated into isoprenoid products, opening new avenues for researching this essential class of metabolites in malaria parasites. We also show that essential apicoplast proteins, such as the enzyme target of the drug fosmidomycin, can be deleted in this mevalonate bypass parasite line, providing a new method to determine the roles of other important apicoplast-resident proteins. Several antibacterial drugs kill malaria parasites by targeting basic processes, such as transcription, in the organelle. We used metabolomic and transcriptomic methods to characterize parasite metabolism after azithromycin treatment triggered loss of the apicoplast and found that parasite metabolism and the production of apicoplast proteins is largely unaltered. These results provide insight into the effects of apicoplast-disrupting drugs, several of which have been used to treat malaria infections in humans. Overall, the mevalonate bypass system provides a way to probe essential aspects of apicoplast biology and study the effects of drugs that target apicoplast processes.


Assuntos
Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Plasmodium falciparum/metabolismo , Animais , Antibacterianos/farmacologia , Apicoplastos/genética , Apicoplastos/fisiologia , Azitromicina/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Humanos , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Plastídeos/parasitologia , Proteínas de Protozoários/metabolismo
8.
Traffic ; 20(8): 571-582, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31094037

RESUMO

Secretory proteins are of particular importance to apicomplexan parasites and comprise over 15% of the genomes of the human pathogens that cause diseases like malaria, toxoplasmosis and babesiosis as well as other diseases of agricultural significance. Here, we developed an approach that allows us to control the trafficking destination of secretory proteins in the human malaria parasite Plasmodium falciparum. Based on the unique structural requirements of apicoplast transit peptides, we designed three conditional localization domains (CLD1, 2 and 3) that can be used to control protein trafficking via the addition of a cell permeant ligand. Studies comparing the trafficking dynamics of each CLD show that CLD2 has the most optimal trafficking efficiency. To validate this system, we tested whether CLD2 could conditionally localize a biotin ligase called holocarboxylase synthetase 1 (HCS1) without interfering with the function of the enzyme. In a parasite line expressing CLD2-HCS1, we were able to control protein biotinylation in the apicoplast in a ligand-dependent manner, demonstrating the full functionality of the CLD tool. We have developed and validated a novel molecular tool that may be used in future studies to help elucidate the function of secretory proteins in malaria parasites.


Assuntos
Apicoplastos/metabolismo , Plasmodium falciparum/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/metabolismo , Coenzima A Ligases/metabolismo , Transporte Proteico , Proteínas de Protozoários/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-33495219

RESUMO

The malaria parasite Plasmodium falciparum contains the apicoplast organelle that synthesizes isoprenoids, which are metabolites necessary for posttranslational modification of Plasmodium proteins. We used fosmidomycin, an antibiotic that inhibits isoprenoid biosynthesis, to identify mechanisms that underlie the development of the parasite's adaptation to the drug at sublethal concentrations. We first determined a concentration of fosmidomycin that reduced parasite growth by ∼50% over one intraerythrocytic developmental cycle (IDC). At this dose, we maintained synchronous parasite cultures for one full IDC and collected metabolomic and transcriptomic data at multiple time points to capture global and stage-specific alterations. We integrated the data with a genome-scale metabolic model of P. falciparum to characterize the metabolic adaptations of the parasite in response to fosmidomycin treatment. Our simulations showed that, in treated parasites, the synthesis of purine-based nucleotides increased, whereas the synthesis of phosphatidylcholine during the trophozoite and schizont stages decreased. Specifically, the increased polyamine synthesis led to increased nucleotide synthesis, while the reduced methyl-group cycling led to reduced phospholipid synthesis and methyltransferase activities. These results indicate that fosmidomycin-treated parasites compensate for the loss of prenylation modifications by directly altering processes that affect nucleotide synthesis and ribosomal biogenesis to control the rate of RNA translation during the IDC. This also suggests that combination therapies with antibiotics that target the compensatory response of the parasite, such as nucleotide synthesis or ribosomal biogenesis, may be more effective than treating the parasite with fosmidomycin alone.


Assuntos
Antimaláricos , Apicoplastos , Fosfomicina , Malária Falciparum , Antimaláricos/uso terapêutico , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética
10.
Malar J ; 20(1): 299, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215262

RESUMO

BACKGROUND: Cultured human red blood cells (RBCs) provide a powerful ex vivo assay platform to study blood-stage malaria infection and propagation. In recent years, high-resolution metabolomic methods have quantified hundreds of metabolites from parasite-infected RBC cultures under a variety of perturbations. In this context, the corresponding control samples of the uninfected culture systems can also be used to examine the effects of these perturbations on RBC metabolism itself and their dependence on blood donors (inter-study variations). METHODS: Time-course datasets from five independent studies were generated and analysed, maintaining uninfected RBCs (uRBC) at 2% haematocrit for 48 h under conditions originally designed for parasite cultures. Using identical experimental protocols, quadruplicate samples were collected at six time points, and global metabolomics were employed on the pellet fraction of the uRBC cultures. In total, ~ 500 metabolites were examined across each dataset to quantify inter-study variability in RBC metabolism, and metabolic network modelling augmented the analyses to characterize the metabolic state and fluxes of the RBCs. RESULTS: To minimize inter-study variations unrelated to RBC metabolism, an internal standard metabolite (phosphatidylethanolamine C18:0/20:4) was identified with minimal variation in abundance over time and across all the samples of each dataset to normalize the data. Although the bulk of the normalized data showed a high degree of inter-study consistency, changes and variations in metabolite levels from individual donors were noted. Thus, a total of 24 metabolites were associated with significant variation in the 48-h culture time window, with the largest variations involving metabolites in glycolysis and synthesis of glutathione. Metabolic network analysis was used to identify the production of superoxide radicals in cultured RBCs as countered by the activity of glutathione oxidoreductase and synthesis of reducing equivalents via the pentose phosphate pathway. Peptide degradation occurred at a rate that is comparable with central carbon fluxes, consistent with active degradation of methaemoglobin, processes also commonly associated with storage lesions in RBCs. CONCLUSIONS: The bulk of the data showed high inter-study consistency. The collected data, quantification of an expected abundance variation of RBC metabolites, and characterization of a subset of highly variable metabolites in the RBCs will help in identifying non-specific changes in metabolic abundances that may obscure accurate metabolomic profiling of Plasmodium falciparum and other blood-borne pathogens.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/sangue , Metaboloma , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Metabolômica
11.
Proc Natl Acad Sci U S A ; 115(11): E2604-E2613, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483266

RESUMO

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.


Assuntos
Biotina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Fígado/parasitologia , Malária/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Apicoplastos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Proteínas de Protozoários/metabolismo
12.
Malar J ; 19(1): 94, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103749

RESUMO

BACKGROUND: Human blood cells (erythrocytes) serve as hosts for the malaria parasite Plasmodium falciparum during its 48-h intraerythrocytic developmental cycle (IDC). Established in vitro protocols allow for the study of host-parasite interactions during this phase and, in particular, high-resolution metabolomics can provide a window into host-parasite interactions that support parasite development. METHODS: Uninfected and parasite-infected erythrocyte cultures were maintained at 2% haematocrit for the duration of the IDC, while parasitaemia was maintained at 7% in the infected cultures. The parasite-infected cultures were synchronized to obtain stage-dependent information of parasite development during the IDC. Samples were collected in quadruplicate at six time points from the uninfected and parasite-infected cultures and global metabolomics was used to analyse cell fractions of these cultures. RESULTS: In uninfected and parasite-infected cultures during the IDC, 501 intracellular metabolites, including 223 lipid metabolites, were successfully quantified. Of these, 19 distinct metabolites were present only in the parasite-infected culture, 10 of which increased to twofold in abundance during the IDC. This work quantified approximately five times the metabolites measured in previous studies of similar research scope, which allowed for more detailed analyses. Enrichment in lipid metabolism pathways exhibited a time-dependent association with different classes of lipids during the IDC. Specifically, enrichment occurred in sphingolipids at the earlier stages, and subsequently in lysophospholipid and phospholipid metabolites at the intermediate and end stages of the IDC, respectively. In addition, there was an accumulation of 18-, 20-, and 22-carbon polyunsaturated fatty acids, which produce eicosanoids and promote gametocytogenesis in infected erythrocyte cultures. CONCLUSIONS: The current study revealed a number of heretofore unidentified metabolic components of the host-parasite system, which the parasite may exploit in a time-dependent manner to grow over the course of its development in the blood stage. Notably, the analyses identified components, such as precursors of immunomodulatory molecules, stage-dependent lipid dynamics, and metabolites, unique to parasite-infected cultures. These conclusions are reinforced by the metabolic alterations that were characterized during the IDC, which were in close agreement with those known from previous studies of blood-stage infection.


Assuntos
Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Parasitemia/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Parasitemia/parasitologia
13.
Malar J ; 18(1): 86, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890151

RESUMO

BACKGROUND: The malarial parasite Plasmodium falciparum is an auxotroph for purines, which are required for nucleic acid synthesis during the intra-erythrocytic developmental cycle (IDC) of the parasite. The capabilities of the parasite and extent to which it can use compensatory mechanisms to adapt to purine deprivation were studied by examining changes in its metabolism under sub-optimal concentrations of hypoxanthine, the primary precursor utilized by the parasite for purine-based nucleic acid synthesis. METHODS: The concentration of hypoxanthine that caused a moderate growth defect over the course of one IDC was determined. At this concentration of hypoxanthine (0.5 µM), transcriptomic and metabolomic data were collected during one IDC at multiple time points. These data were integrated with a metabolic network model of the parasite embedded in a red blood cell (RBC) to interpret the metabolic adaptation of P. falciparum to hypoxanthine deprivation. RESULTS: At a hypoxanthine concentration of 0.5 µM, vacuole-like structures in the cytosol of many P. falciparum parasites were observed after the 24-h midpoint of the IDC. Parasites grown under these conditions experienced a slowdown in the progression of the IDC. After 72 h of deprivation, the parasite growth could not be recovered despite supplementation with 90 µM hypoxanthine. Simulations of P. falciparum metabolism suggested that alterations in ubiquinone, isoprenoid, shikimate, and mitochondrial metabolism occurred before the appearance of these vacuole-like structures. Alterations were found in metabolic reactions associated with fatty acid synthesis, the pentose phosphate pathway, methionine metabolism, and coenzyme A synthesis in the latter half of the IDC. Furthermore, gene set enrichment analysis revealed that P. falciparum activated genes associated with rosette formation, Maurer's cleft and protein export under two different nutrient-deprivation conditions (hypoxanthine and isoleucine). CONCLUSIONS: The metabolic network analysis presented here suggests that P. falciparum invokes specific purine-recycling pathways to compensate for hypoxanthine deprivation and maintains a hypoxanthine pool for purine-based nucleic acid synthesis. However, this compensatory mechanism is not sufficient to maintain long-term viability of the parasite. Although P. falciparum can complete a full IDC in low hypoxanthine conditions, subsequent cycles are disrupted.


Assuntos
Adaptação Fisiológica , Hipoxantina/metabolismo , Plasmodium falciparum/fisiologia , Animais , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Metabolômica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Sobrevida , Fatores de Tempo
14.
Mol Microbiol ; 106(3): 439-451, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28836704

RESUMO

Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.


Assuntos
Lipoilação/genética , Lipoilação/fisiologia , Chlamydia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases , Oxirredução , Peptídeo Sintases/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
15.
Proteins ; 85(9): 1777-1783, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28543853

RESUMO

Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP-dependent ligase that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the only known canonical lipoate ligase in Pf and functions as a redox switch between two lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a deletion construct of PfLipL1 (PfLipL1Δ243-279 ) bound to lipoate, and validate the lipoylation activity of this construct in both an in vitro lipoylation assay and a cell-based lipoylation assay. This characterization represents the first step in understanding the redox dependence of the lipoylation mechanism in malaria parasites. Proteins 2017; 85:1777-1783. © 2017 Wiley Periodicals, Inc.


Assuntos
Peptídeo Sintases/química , Plasmodium falciparum/enzimologia , Conformação Proteica , Proteínas de Protozoários/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação Proteica
16.
Mol Microbiol ; 94(1): 156-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25116855

RESUMO

Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyses the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.


Assuntos
Proteínas Mitocondriais/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Lipoilação , Malária Falciparum/parasitologia , Proteínas Mitocondriais/genética , Oxirredução , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
17.
PLoS Pathog ; 9(9): e1003655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086138

RESUMO

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Assuntos
Apicoplastos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Apicoplastos/genética , Liases de Carbono-Enxofre/genética , Humanos , Proteínas Ferro-Enxofre/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Terpenos/metabolismo
18.
Cell Microbiol ; 15(9): 1585-604, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23490300

RESUMO

The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.


Assuntos
Interações Hospedeiro-Parasita , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Ácido Tióctico/metabolismo , Animais , Deleção de Genes , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
19.
Bioorg Med Chem Lett ; 24(3): 911-6, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24398298

RESUMO

The enoyl acyl-carrier protein reductase (ENR) enzyme of the apicomplexan parasite family has been intensely studied for antiparasitic drug design for over a decade, with the most potent inhibitors targeting the NAD(+) bound form of the enzyme. However, the higher affinity for the NADH co-factor over NAD(+) and its availability in the natural environment makes the NADH complex form of ENR an attractive target. Herein, we have examined a benzimidazole family of inhibitors which target the NADH form of Francisella ENR, but despite good efficacy against Toxoplasma gondii, the IC50 for T. gondii ENR is poor, with no inhibitory activity at 1 µM. Moreover similar benzimidazole scaffolds are potent against fungi which lack the ENR enzyme and as such we believe that there may be significant off target effects for this family of inhibitors.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Sistemas de Liberação de Medicamentos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Antiparasitários/química , Antiparasitários/farmacologia , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular
20.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38410435

RESUMO

Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a small fraction of the blood stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of dormant persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated when actively replicating parasites recrudesced. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa