Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Bioconjug Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946349

RESUMO

Biosensors based on immobilized antibodies require molecular strategies that (i) couple the antibodies in a stable fashion while maintaining the conformation and functionality, (ii) give outward orientation of the paratope regions of the antibodies for good accessibility to analyte molecules in the biofluid, and (iii) surround the antibodies by antibiofouling molecules. Here, we demonstrate a method to achieve oriented coupling of antibodies to an antifouling poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) substrate, using glycan remodeling to create antibody-DNA conjugates. The coupling, orientation, and functionality of the antibodies were studied using two analysis methods with single-molecule resolution, namely single-molecule localization microscopy and continuous biosensing by particle motion. The biosensing functionality of the glycan-remodeled antibodies was demonstrated in a sandwich immunosensor for procalcitonin. The results show that glycan-remodeled antibodies enable oriented immobilization and biosensing functionality with low nonspecific binding on antifouling polymer substrates.

2.
Anal Chem ; 95(20): 7950-7959, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178186

RESUMO

Industrial food processes are monitored to ensure that food is being produced with good quality, yield, and productivity. For developing innovative real-time monitoring and control strategies, real-time sensors are needed that can continuously report chemical and biochemical data of the manufacturing process. Here, we describe a generalizable methodology to develop affinity-based biosensors for the continuous monitoring of small molecules in industrial food processes. Phage-display antibody fragments were developed for the measurement of small molecules, as exemplified with the measurement of glycoalkaloids (GAs) in potato fruit juice. The recombinant antibodies were selected for use in a competition-based biosensor with single-molecule resolution, called biosensing by particle motion, using assay architectures with free particles as well as tethered particles. The resulting sensor measures GAs in the micromolar range, is reversible, has a measurement response time below 5 min, and enables continuous monitoring of GAs in protein-rich solutions for more than 20 h with concentration measurement errors below 15%. The demonstrated biosensor gives the perspective to enable a variety of monitoring and control strategies based on continuous measurement of small molecules in industrial food processes.


Assuntos
Técnicas Biossensoriais , Solanum tuberosum , Técnicas Biossensoriais/métodos , Imunoensaio , Movimento (Física) , Alimentos
3.
Nano Lett ; 20(4): 2296-2302, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32091908

RESUMO

Single-molecule techniques have become impactful in bioanalytical sciences, though the advantages for continuous biosensing are yet to be discovered. Here we present a multiplexed, continuous biosensing method, enabled by an analyte-sensitive, single-molecular nanoswitch with a particle as a reporter. The nanoswitch opens and closes under the influence of single target molecules. This reversible switching yields binary transitions between two highly reproducible states, enabling reliable quantification of the single-molecule kinetics. The multiplexing functionality is encoded per particle via the dissociation characteristics of the nanoswitch, while the target concentration is revealed by the association characteristics. We demonstrate by experiments and simulations the multiplexed, continuous monitoring of oligonucleotide targets, at picomolar concentrations in buffer and in filtered human blood plasma.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Oligonucleotídeos/análise , Humanos , Cinética , Nanotecnologia/métodos , Oligonucleotídeos/sangue
4.
Langmuir ; 34(1): 179-186, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29183122

RESUMO

We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy-distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications.


Assuntos
Coloides/química , Nanopartículas de Magnetita/química , Simulação por Computador , Fenômenos Magnéticos , Tamanho da Partícula , Espalhamento de Radiação , Eletricidade Estática , Propriedades de Superfície , Viscosidade
5.
Anal Chem ; 89(6): 3402-3410, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192952

RESUMO

Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude.


Assuntos
Anticorpos/química , Nanopartículas de Magnetita/química , Simulação de Dinâmica Molecular , Fenômenos Magnéticos , Tamanho da Partícula , Propriedades de Superfície
6.
Langmuir ; 33(3): 696-705, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28036188

RESUMO

We report on a measurement of forces between particles adsorbed at a water-oil interface in the presence of an oil-soluble polymer. The cationic polymer interacts electrostatically with the negatively charged particles, thereby modulating the particle contact angle and the magnitude of capillary attraction between the particles. However, polymer adsorption to the interface also generates an increase in the apparent interfacial viscosity over several orders of magnitude in a time span of a few hours. We have designed an experiment in which repeated motion trajectories are measured on pairs of particles. The experiment gives an independent quantification of the interfacial drag coefficient (10-7-10-4 Ns/m) and of the interparticle capillary forces (0.1-10 pN). We observed that the attractive capillary force depends on the amount of polymer in the oil phase and on the particle pair. However, the attraction appears to be independent of the surface rheology, with changes over a wide range of apparent viscosity values due to aging. Given the direction (attraction), the range (∼µm), and the distance dependence (∼1/S5) of the observed interparticle force, we interpret the force as being caused by quadrupolar deformations of the fluid-fluid interface induced by particle surface roughness. The results suggest that capillary forces are equilibrated in the early stages of interface aging and thereafter do not change anymore, even though strong changes in surface rheology still occur. The described experimental approach is powerful for studying dissipative as well as conservative forces of micro- and nanoparticles at fluid-fluid interfaces for systems out of equilibrium.

7.
Analyst ; 142(22): 4247-4256, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29068008

RESUMO

The accessibility of particle-coupled antibodies is important for many analytical applications, but comprehensive data on parameters controlling the accessibility are scarce. Here we report on the site-specific accessibility of monoclonal antibodies, immobilized on magnetic nanoparticles (500 nm) by the widely used covalent EDC coupling method, with the variation of four key coupling parameters (surface activation and immobilization pH, crosslinker and antibody concentration ratios). By developing quantitative radio-labelled assays, the number of immobilized antibodies, the Fab domain accessibility (in a sandwich immunoassay), and the Fc domain accessibility (in a Protein G assay) were determined. For sub-monolayer surface coverage, the observed numbers of accessible Fab and Fc domains are equal and scale linearly with the antibody density. For above monolayer coverage, the fractions of accessible Fab and Fc domains decrease, in an unequal manner. The results show that the antibody accessibility is primarily determined by the antibody surface density, rather than by chemical reactivity or the charge state, and that crowded conditions affect Fab and Fc accessibility in an unequal manner.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Nanopartículas/química , Imunoensaio , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Magnetismo
8.
Biophys J ; 111(8): 1612-1620, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760349

RESUMO

Tethered particle motion (TPM), the motion of a micro- or nanoparticle tethered to a substrate by a macromolecule, is a system that has proven to be extremely useful for its ability to reveal physical features of the tether, because the thermal motion of the bound particle reports sensitively on parameters like the length, the rigidity, or the folding state of its tether. In this article, we survey the applicability of TPM to probe the kinetics of single secondary bonds, bonds that form and break between the tethered particle and a substrate due, for instance, to receptor/ligand pairs on particle and substrate. Much like the tether itself affects the motion pattern, so do the presence and absence of such secondary connections. Keeping the tether properties constant, we demonstrate how raw positional TPM data may be parsed to generate detailed insights into the association and dissociation kinetics of single secondary bonds. We do this using coarse-grained molecular dynamics simulations specifically developed to treat the motion of particles close to interfaces.


Assuntos
Substâncias Macromoleculares/metabolismo , Microesferas , Simulação de Dinâmica Molecular , Movimento , Nanopartículas , Cinética , Conformação Molecular , Nanopartículas/química , Temperatura
9.
Opt Express ; 24(2): A123-38, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832566

RESUMO

Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.


Assuntos
Coloides/química , Dimerização , Luz , Rotação , Espalhamento de Radiação , Simulação por Computador , Refratometria
10.
Soft Matter ; 12(25): 5551-62, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27253322

RESUMO

We describe an interfacial rheometry technique based on pairs of micrometer-sized magnetic particles at a fluid-fluid interface. The particles are repeatedly attracted and repelled by well-controlled magnetic dipole-dipole forces, so-called interfacial rheometry by intra-pair magnetophoresis (IPM). From the forces (∼pN), displacements (∼µm) and velocities (∼µm s(-1)) of the particles we are able to quantify the interfacial drag coefficient of particles within a few seconds and over very long timescales. The use of local dipole-dipole forces makes the system insensitive to fluid flow and suited for simultaneously recording many particles in parallel over a long period of time. We apply IPM to study the time-dependent adsorption of an oil-soluble amino-modified silicone polymer at a water-oil interface using carboxylated magnetic particles. At low polymer concentration the carboxylated particles remain on the water side of the water-oil interface, while at high polymer concentrations the particles transit into the oil phase. Both conditions show a drag coefficient that does not depend on time. However, at intermediate polymer concentrations data show an increase of the interfacial drag coefficient as a function of time, with an increase over more than three orders of magnitude (10(-7) to 10(-4) N s m(-1)), pointing to a strong polymer-polymer interaction at the interface. The time-dependence of the interfacial drag appears to be highly sensitive to the polymer concentration and to the ionic strength of the aqueous phase. We foresee that IPM will be a very convenient technique to study fluid-fluid interfaces for a broad range of materials systems.

11.
Nano Lett ; 15(5): 3507-11, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25833294

RESUMO

We present a plasmonic biosensor based on hundreds of individual gold nanorods with single-molecule sensitivity that are simultaneously monitored in real-time within a dark-field microscopy setup. The approach allows for the statistical analysis of single-molecule interactions without requiring any labeling of the analyte. We study an antibody-antigen interaction and find that the waiting-time distribution is concentration-dependent and obeys Poisson statistics. The ability to probe hundreds of nanoparticles simultaneously will provide a sensor with a dynamic range of 7 decades in concentration and will enable the study of heterogeneity in molecular interactions.


Assuntos
Reações Antígeno-Anticorpo , Técnicas Biossensoriais , Ouro/química , Nanotubos/química , Humanos , Mapeamento de Interação de Proteínas , Ressonância de Plasmônio de Superfície
12.
Anal Chem ; 86(16): 8158-66, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25048623

RESUMO

The antigen-capturing activity of antibody-coated nanoparticles is very important for affinity-based bioanalytical tools. In this paper, a comprehensive study is reported of the antigen-capturing activity of antibodies that are nondirectionally immobilized on a nanoparticle surface. Superparamagnetic nanoparticles (500 nm) were covalently functionalized with different quantities of monoclonal antibodies against cardiac troponin I (cTnI). At a low antibody surface coverage, up to 4% of the immobilized antibodies could capture antigen molecules from solution. At high antibody coverage (≥50 × 10(2) antibodies per nanoparticle, i.e., ≥ 64 × 10(2) antibodies per µm(2)), the fraction of antigen-capturing antibodies drops well below 4% and the number of active antibodies saturates at about 120 per nanoparticle. The fraction of active antibodies is small, yet surprisingly their dissociation constants (Kd) are low, between 10 and 200 pM. In addition, the surface-binding activity of the antibody-coated nanoparticles was analyzed in an optomagnetic sandwich immunoassay biosensor, measuring cTnI in undiluted blood plasma. The data show that the immunoassay response scales with the number of active antibodies, increasing initially and saturating at higher antibody densities. The observations are summarized in a molecular sketch of the attachment, ordering, and functionality of antibodies on the nanoparticle surface.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Nanopartículas/química , Troponina I/sangue , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais/métodos , Humanos , Imunoensaio/métodos , Cinética , Troponina I/imunologia
13.
Anal Chem ; 86(6): 3084-91, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24579568

RESUMO

Aptamers are emerging as powerful synthetic bioreceptors for fundamental research, diagnostics, and therapeutics. For further advances, it is important to gain a better understanding of how aptamers interact with their targets. In this work, we have used magnetic force-induced dissociation experiments to study the dissociation process of two different aptamer-protein complexes, namely for hIgE and Ara h 1. The measurements show that both complexes exhibit dissociation with two distinct regimes: the dissociation rate depends weakly on the applied force at high forces but depends stronger on force at low forces. We attribute these observations to the existence of at least one intermediate state and at least two energy barriers in the aptamer-protein interaction. The measured spontaneous dissociation rate constants were validated with SPR using both Biacore and fiber optic technology. This work demonstrates the potential of the magnetic force-induced dissociation approach for an in-depth study of the dissociation kinetics of aptamer-protein bonds, which is not possible with SPR technologies. The results will help in the development and expansion of aptamers as bioaffinity probes.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas/química , Sequência de Bases , Ligação Proteica , Ressonância de Plasmônio de Superfície
14.
Analyst ; 139(7): 1672-7, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24534803

RESUMO

Particle labels are widely used in affinity-based biosensing due to the high detection signal per label, the high stability, and the convenient biofunctionalization of particles. In this paper we address the question how the time-course of particle binding and the resulting signals depend on the length of captured target molecules. As a model system we used fragments of dsDNA with lengths of 105 bp (36 nm), 290 bp (99 nm) and 590 bp (201 nm), detected in an evanescent-field optomagnetic biosensing system. On both ends the fragments were provided with small-molecule tags to allow binding of the fragments to protein-coated particles and to the capture molecules at the sensor surface. For isolated single particles bound to the surface, we observe that the optical scattering signal per particle depends only weakly on the fragment length, which we attribute to the pivoting motion that allows the particles to get closer to the surface. Our data show a strong influence of the fragment length on the particle binding: the binding rate of particles to the sensor surface is an order of magnitude higher for the longest dsDNA fragments compared to the smallest fragment studied in this paper. We attribute the enhanced binding rate to the length and motional freedom of the fragments. These results generate a new dimension for the design of assays and systems in particle-based biosensing.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/química , DNA/química , Nanopartículas de Magnetita/química , DNA/genética , DNA Bacteriano/genética , Luz , Tamanho da Partícula , Espalhamento de Radiação , Estreptavidina/química , Propriedades de Superfície , Fatores de Tempo
15.
ACS Sens ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967449

RESUMO

Biosensing by particle motion is a biosensing technology that relies on single-molecule interactions and enables the continuous monitoring of analytes from picomolar to micromolar concentration levels. However, during sensor operation, the signals are observed to change gradually. Here, we present a comprehensive methodology to elucidate the molecular origins of long-term changes in a particle motion sensor, focusing on a competitive sensor design under conditions without flow. Experiments were performed wherein only the particles or only the surfaces were aged in order to clarify how each individual component changes over time. Furthermore, distributions of particle motion patterns and switching activity were studied to reveal how particle populations change over timespans of several days. For a cortisol sensor with anticortisol antibodies on the particles and cortisol analogues on the sensing surface, the leading hypotheses for the long-term changes are (i) that the particles lose antibodies and develop nonspecific interactions and (ii) that analogue molecules dissociate from the sensing surface. The developed methodologies and the acquired insights pave a way for realizing sensors that can operate over long timespans.

16.
Biosens Bioelectron ; 249: 115934, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215637

RESUMO

The ability to continuously monitor cytokines is desirable for fundamental research studies and healthcare applications. Cytokine release is characterized by picomolar circulating concentrations, short half-lives, and rapid peak times. Here, we describe the characteristics and feasibility of a particle-based biosensing technique for continuous monitoring of TNF-α at picomolar concentrations. The technique is based on the optical tracking of particle motion and uses an antibody sandwich configuration. Experimental results show how the analyte concentration influences the particle diffusivity and characteristic response time of the sensor, and how the sensitivity range depends on the antibody functionalization density. Furthermore, the data clarifies how antibodies supplemented in solution can shorten the characteristic response time. Finally, we demonstrate association rate-based sensing as a first step towards continuous monitoring of picomolar TNF-α concentrations, over a period of 2 h with delay times under 15 min. The insights from this research will enable the development of continuous monitoring sensors using high-affinity binders, providing the sensitivity and speed needed in applications like cytokine monitoring.


Assuntos
Técnicas Biossensoriais , Fator de Necrose Tumoral alfa , Técnicas Biossensoriais/métodos , Citocinas , Anticorpos
17.
Eur Biophys J ; 42(6): 419-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23397404

RESUMO

The adhesion of cells to surfaces plays a crucial role in processes related to motility and tissue growth. Nonspecific interactions with a surface, e.g., by electrostatic or van der Waals forces, can complement specific molecular interactions and can themselves support strong adhesion. In order to understand the mechanism by which cells establish an adhesive interface in the absence of specific proteins, we have studied the detachment kinetics of monocytic cells from glass surfaces coated with poly-L-lysine. We exposed adhering cells to a shear flow and studied their deformation and detachment trajectories. Our experiments reveal that between 20 and 60 parallel membrane tethers form prior to detachment from the surface. We propose that the extraction of tethers is the consequence of an inhomogeneous adhesion interface and model the detachment mechanism as the dynamic extrusion of cooperatively loaded tethers. In our model, individual tethers detach by a peeling process in which a zone of a few nanometers is loaded by the externally applied force. Our findings suggest that the formation of an inhomogeneous non-specific adhesion interface between a cell and its substrate gives rise to more complex dynamics of detachment than previously discussed.


Assuntos
Adesão Celular , Monócitos/citologia , Movimento Celular , Células Cultivadas , Vidro , Humanos , Microscopia/métodos , Modelos Biológicos , Polilisina/química , Resistência ao Cisalhamento , Eletricidade Estática , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo
18.
ACS Sens ; 8(11): 4216-4225, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37955441

RESUMO

To control and optimize the speed of a molecular biosensor, it is crucial to quantify and understand the mechanisms that underlie the time-dependent response of the sensor. Here, we study how the kinetic properties of a particle-based sandwich immunosensor depend on underlying parameters, such as reactant concentrations and the size of the reaction chamber. The data of the measured sensor responses could be fitted with single-exponential curves, with characteristic response times that depend on the analyte concentration and the binder concentrations on the particle and substrate. By comparing characteristic response times at different incubation configurations, the data clarifies how two distinct reaction pathways play a role in the sandwich immunosensor, namely, analyte binding first to particles and thereafter to the substrate, and analyte binding first to the substrate and thereafter to a particle. For a concrete biosensor design, we found that the biosensor is dominated by the reaction pathway where analyte molecules bind first to the substrate and thereafter to a particle. Within this pathway, the binding of a particle to the substrate-bound analyte dominates the sensor response time. Thus, the probability of a particle interacting with the substrate was identified as the main direction to improve the speed of the biosensor while maintaining good sensitivity. We expect that the developed immunosensor and research methodology can be generally applied to understand the reaction mechanisms and optimize the kinetic properties of sandwich immunosensors with particle labels.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Imunoensaio/métodos
19.
ACS Sens ; 8(6): 2271-2281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37216442

RESUMO

Single-molecule sensors collect statistics of single-molecule interactions, and the resulting data can be used to determine concentrations of analyte molecules. The assays are generally end-point assays and are not designed for continuous biosensing. For continuous biosensing, a single-molecule sensor needs to be reversible, and the signals should be analyzed in real time in order to continuously report output signals, with a well-controlled time delay and measurement precision. Here, we describe a signal processing architecture for real-time continuous biosensing based on high-throughput single-molecule sensors. The key aspect of the architecture is the parallel computation of multiple measurement blocks that enables continuous measurements over an endless time span. Continuous biosensing is demonstrated for a single-molecule sensor with 10,000 individual particles that are tracked as a function of time. The continuous analysis includes particle identification, particle tracking, drift correction, and detection of the discrete timepoints where individual particles switch between bound and unbound states, yielding state transition statistics that relate to the analyte concentration in solution. The continuous real-time sensing and computation were studied for a reversible cortisol competitive immunosensor, showing how the precision and time delay of cortisol monitoring are controlled by the number of analyzed particles and the size of the measurement blocks. Finally, we discuss how the presented signal processing architecture can be applied to various single-molecule measurement methods, allowing these to be developed into continuous biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Hidrocortisona , Imunoensaio
20.
Lab Chip ; 23(20): 4600-4609, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772830

RESUMO

Real-time monitoring-and-control of biological systems requires lab-on-a-chip sensors that are able to accurately measure concentration-time profiles with a well-defined time delay and accuracy using only small amounts of sampled fluid. Here, we study real-time continuous monitoring of dynamic concentration profiles in a microfluidic measurement chamber. Step functions and sinusoidal oscillations of concentrations were generated using two pumps and a herringbone mixer. Concentrations in the bulk of the measurement chamber were quantified using a solution with a dye and light absorbance measurements. Concentrations near the surface were measured using a reversible cortisol sensor based on particle motion. The experiments show how the total time delay of the real-time sensor has contributions from advection, diffusion, reaction kinetics at the surface and signal processing. The total time delay of the studied real-time cortisol sensor was ∼90 seconds for measuring 63% of the concentration change. Monitoring of sinusoidal cortisol concentration-time profiles showed that the sensor has a low-pass frequency response with a cutoff frequency of ∼4 mHz and a lag time of ∼60 seconds. The described experimental methodology paves the way for the development of monitoring-and-control in lab-on-a-chip systems and for further engineering of the analytical characteristics of real-time continuous biosensors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa