Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428422

RESUMO

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Assuntos
Inflamação , Interleucina-10 , Mielopoese , Animais , Camundongos , Gravidez/imunologia , Feto , Hematopoese , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Interleucina-10/imunologia , Animais Recém-Nascidos , Feminino
2.
RNA ; 26(11): 1654-1666, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763916

RESUMO

The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , RNA de Transferência/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina/metabolismo , Adenosina Desaminase/química , Adolescente , Sítios de Ligação , Células Cultivadas , Criança , Pré-Escolar , Códon de Terminação , Feminino , Predisposição Genética para Doença , Humanos , Inosina/metabolismo , Deficiência Intelectual/metabolismo , Masculino , Linhagem , Domínios Proteicos , Proteínas de Ligação a RNA/química , Sequenciamento do Exoma
3.
Cell Stem Cell ; 31(7): 1020-1037.e9, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754428

RESUMO

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.


Assuntos
Autofagia , Glicólise , Células-Tronco Hematopoéticas , Inflamação , Animais , Células-Tronco Hematopoéticas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Envelhecimento/patologia , Envelhecimento/metabolismo , Senescência Celular , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Glucose/metabolismo
4.
Cell Stem Cell ; 30(11): 1403-1420, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865087

RESUMO

Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.


Assuntos
Epigênese Genética , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo
5.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745377

RESUMO

Neonates, in contrast to adults, are highly susceptible to inflammation and infection. Here we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPC) respond to inflammation, testing the hypothesis that deficits in engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that despite similar molecular wiring as adults, fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical EM transcriptional program. Moreover, we find that fetal HSPCs are capable of responding to EM-inducing inflammatory stimuli in vitro , but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero . Accordingly, we demonstrate that loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of premature parturition. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection. HIGHLIGHTS: The structure of the HSPC compartment is conserved from late fetal to adult life.Fetal HSPCs have diminished steady-state myeloid cell production compared to adult.Fetal HSPCs are restricted from engaging in emergency myelopoiesis by maternal IL-10.Restriction of emergency myelopoiesis may explain neutropenia in septic neonates. eTOC BLURB: Fetal hematopoietic stem and progenitor cells are restricted from activating emergency myelopoiesis pathways by maternal IL-10, resulting in inadequate myeloid cell production in response to inflammatory challenges and contributing to neonatal neutropenia.

6.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645930

RESUMO

Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( 1 ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( 2 ), and for HSC function and response to nutrient stress ( 3,4 ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( 4 ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( 5 ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity. One-Sentence Summary: Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa