Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pharmacol Exp Ther ; 388(3): 751-764, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673681

RESUMO

Toll-like receptor 7 (TLR7) and TLR8 are single-stranded RNA-sensing endosomal pattern recognition receptors that evolved to defend against viral infections. However, aberrant TLR7/8 activation by endogenous ligands has been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus. TLR activation and type I interferon (IFN) were shown recently to impart resistance to glucocorticoids (GC), which are part of the standard of care for multiple autoimmune diseases. While GCs are effective, a plethora of undesirable effects limit their use. New treatment approaches that allow for the use of lower and safer doses of GCs would be highly beneficial. Herein, we report that a dual TLR7/8 inhibitor (TLR7/8i) increases the effectiveness of GCs in inflammatory settings. Human peripheral blood mononuclear cell studies revealed increased GC sensitivity in the presence of TLR7/8i for reducing inflammatory cytokine production, a synergistic effect that was most pronounced in myeloid cells, particularly monocytes. Gene expression analysis by NanoString and single-cell RNA sequencing revealed that myeloid cells were substantially impacted by combining low-dose TLR7/8i and GC, as evidenced by the effects on nuclear factor-kappa B-regulated cytokines and GC-response genes, although IFNs were affected to a smaller degree. Low dose of TLR7/8i plus GC was more efficacious then either agent alone in the MRL/lpr mouse model of lupus, with improved proteinuria and survival. Overall, our findings indicate a GC-sparing potential for TLR7/8i compounds, suggesting TLR7/8i may offer a new strategy for the treatment of autoimmune diseases. SIGNIFICANCE STATEMENT: Some features of autoimmune diseases may be resistant to glucocorticoids, mediated at least in part by toll-like receptor (TLR) activation, necessitating higher doses that are associated with considerable toxicities. We demonstrate that TLR7/8 inhibition and glucocorticoids work synergistically to reduce inflammation in a cell-type specific manner and suppress disease in a mouse model of lupus. TLR7/8 inhibition is a promising strategy for the treatment of autoimmune diseases and has glucocorticoid-sparing potential.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Camundongos , Animais , Humanos , Receptor 7 Toll-Like/metabolismo , Glucocorticoides/farmacologia , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos MRL lpr , Receptores Toll-Like , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética
2.
J Pharmacol Exp Ther ; 376(3): 397-409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33328334

RESUMO

Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus. Thus, we hypothesize that an inhibitor that blocks TLR7/8 would be an effective therapeutic treatment. Prior efforts to develop inhibitors of TLR7/8 have been largely unsuccessful as a result of the challenge of producing a small-molecule inhibitor for these difficult targets. Here, we report the characterization of M5049 and compound 2, molecules which were discovered in a medicinal chemistry campaign to produce dual TLR7/8 inhibitors with drug-like properties. Both compounds showed potent and selective activity in a range of cellular assays for inhibition of TLR7/8 and block synthetic ligands and natural endogenous RNA ligands such as microRNA and Alu RNA. M5049 was found to be potent in vivo as TLR7/8 inhibition efficaciously treated disease in several murine lupus models and, interestingly, was efficacious in a disease context in which TLR7/8 activity has not previously been considered a primary disease driver. Furthermore, M5049 had greater potency in disease models than expected based on its in vitro potency and pharmacokinetic/pharmacodynamic properties. Because of its preferential accumulation in tissues, and ability to block multiple TLR7/8 RNA ligands, M5049 may be efficacious in treating autoimmunity and has the potential to provide benefit to a variety of patients with varying disease pathogenesis. SIGNIFICANCE STATEMENT: This study reports discovery of a novel toll-like receptor (TLR) 7 and TLR8 inhibitor (M5049); characterizes its binding mode, potency/selectivity, and pharmacokinetic and pharmacodynamic properties; and demonstrates its potential for treating autoimmune diseases in two mouse lupus models. TLR7/8 inhibition is unique in that it may block both innate and adaptive autoimmunity; thus, this study suggests that M5049 has the potential to benefit patients with autoimmune diseases.


Assuntos
Autoimunidade/efeitos dos fármacos , Descoberta de Drogas , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
3.
Immunohorizons ; 4(2): 93-107, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32086319

RESUMO

TLR7 and TLR8 are pattern recognition receptors that reside in the endosome and are activated by ssRNA molecules. TLR7 and TLR8 are normally part of the antiviral defense response, but they have also been implicated as drivers of autoimmune diseases such as lupus. The receptors have slightly different ligand-binding specificities and cellular expression patterns that suggest they have nonredundant specialized roles. How the roles of TLR7 and TLR8 differ may be determined by which cell types express each TLR and how the cells respond to activation of each receptor. To provide a better understanding of the effects of TLR7/8 activation, we have characterized changes induced by TLR-specific agonists in different human immune cell types and defined which responses are a direct consequence of TLR7 or TLR8 activation and which are secondary responses driven by type I IFN or cytokines produced subsequent to the primary response. Using cell sorting, gene expression analysis, and intracellular cytokine staining, we have found that the IFN regulatory factor (IRF) and NF-κB pathways are differentially activated downstream of the TLRs in various cell types. Studies with an anti-IFNAR Ab in human cells and lupus mice showed that inhibiting IFN activity can block secondary IFN-induced gene expression changes downstream of TLR7/8 activation, but not NF-κB-regulated genes induced directly by TLR7/8 activation at earlier timepoints. In summary, these results elucidate the different roles TLR7 and TLR8 play in immunity and inform strategies for potential treatment of autoimmune diseases driven by TLR7/8 activation.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , NF-kappa B/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Animais , Autoanticorpos/sangue , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação , Interferon-alfa/farmacologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos DBA , Modelos Biológicos , Células Mieloides/classificação , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
4.
Vaccine ; 21(9-10): 961-70, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12547609

RESUMO

Safe and cost-effective adjuvants are a critical requirement for subunit vaccine development. We report here the in vivo activity of a series of fully synthetic LPS receptor agonists that have been shown to activate NF-kappaB signaling through the Toll-like receptor 4 (TLR4). These compounds boost antibody responses to protein antigens when coadministered at microgram doses in mice. At these dosage levels no adverse effects are observed. Antibody responses are largely IgG1, with enhanced IgG2a, and down-regulated IgE as compared to alum adjuvanted immunization. Stimulation of Th1 is confirmed by enhanced gamma-interferon production after in vitro antigen restimulation of spleen cells from mice immunized with the synthetic adjuvants. The adjuvants are active by both subcutaneous and intranasal routes of vaccine administration, and in the latter case can amplify both serum IgG and serum and mucosal IgA responses. The compounds must be administered at the same site with antigen to boost anti-vaccine antibody. These fully synthetic ligands of the innate immune system offer the potential for use as effective, safe, and nonbiologically-derived adjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Formação de Anticorpos , Receptores de Lipopolissacarídeos/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Feminino , Imunidade nas Mucosas , Interleucina-10/sangue , Lipídeo A/administração & dosagem , Lipídeo A/química , Lipídeo A/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Toxoide Tetânico/administração & dosagem , Células Th1/imunologia , Células Th2/imunologia
5.
J Pharmacol Exp Ther ; 304(3): 1093-102, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12604686

RESUMO

Alpha-D-glucopyranose,3-O-decyl-2-deoxy-6-O-[2-deoxy-3-O-[(3R)-3-methoxydecyl]-6-O-methyl-2-[[(11Z)-1-oxo-11-octadecenyl]amino]-4-O-phosphono-beta-D-glucopyranosyl]-2-[(1,3-dioxotetradecyl)amino]-1-(dihydrogen phosphate), tetrasodium salt (E5564) is a second-generation synthetic lipodisaccharide designed to antagonize the toxic effects of endotoxin, a major immunostimulatory component of the outer cell membrane of Gram negative bacteria. In vitro, E5564 dose dependently (nanomolar concentrations) inhibited lipopolysaccharide (LPS)-mediated activation of primary cultures of human myeloid cells and mouse tissue culture macrophage cell lines as well as human or animal whole blood as measured by production of tumor necrosis factor-alpha and other cytokines. E5564 also blocked the ability of Gram negative bacteria to stimulate human cytokine production in whole blood. In vivo, E5564 blocked induction of LPS-induced cytokines and LPS or bacterial-induced lethality in primed mice. E5564 was devoid of agonistic activity when tested both in vitro and in vivo and has no antagonistic activity against Gram positive-mediated cellular activation at concentrations up to 1 microM. E5564 blocked LPS-mediated activation of nuclear factor-kappaB in toll-like receptor 4/MD-2-transfected cells. In a mouse macrophage cell line, activity of E5564 was independent of serum, suggesting that E5564 exerts its activity through the cell surface receptor(s) for LPS, without the need for serum LPS transfer proteins. Similar to (6-O-[2-deoxy-6-O-methyl-4-O-phosphono-3-O-[(R)-3-Z-dodec-5-endoyloxydecl]-2-[3-oxo-tetradecanoylamino]-beta-O-phosphono-alpha-D-glucopyranose tetrasodium salt (E5531), another lipid A-like antagonist, E5564 associates with plasma lipoproteins, causing low concentrations of E5564 to be quantitatively inactivated in a dose- and time-dependent manner. However, compared with E5531, E5564 is a more potent inhibitor of cytokine generation, and higher doses retain activity for durations likely sufficient to permit clinical application. These results indicate that E5564 is a potent antagonist of LPS and lacks agonistic activity in human and animal model systems, making it a potentially effective therapeutic agent for treatment of disease states caused by endotoxin.


Assuntos
Proteínas de Drosophila , Endotoxinas/antagonistas & inibidores , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Sangue/efeitos dos fármacos , Sangue/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Escherichia coli/química , Cobaias , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Choque Séptico/metabolismo , Choque Séptico/mortalidade , Fatores de Tempo , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Necrose Tumoral alfa/metabolismo
6.
J Pharmacol Exp Ther ; 300(2): 655-61, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11805229

RESUMO

A series of novel, synthetic compounds containing lipids linked to a phosphate-containing acyclic backbone are shown to have similar biological properties to lipopolysaccharide (LPS). These compounds showed intrinsic agonistic properties when tested for their ability to stimulate tumor necrosis factor-alpha in human whole blood and interleukin-6 in U373 human glioblastoma cells without added LPS coreceptor CD14. The presence of the LPS antagonist E5564 completely blocked responses, suggesting that the novel compounds and LPS share a common mechanism of cell activation. Stereoselectivity of the molecules was observed in vitro; compounds with an R,R,R,R-configuration were strongly agonistic, whereas compounds with an R,S,S,R-configuration were much weaker in their activity on human whole blood and U373 cells. We also tested the effect of the compounds in cells transfected with the LPS receptor Toll-like receptor 4 (TLR4), with similar results, further supporting a shared mechanism with LPS. This was confirmed in vivo where the agonists failed to elicit cytokine responses in C3H/HeJ mice lacking TLR4 signaling. Because LPS-like molecules enhance immune responses, the compounds were mixed with tetanus toxoid and administered to mice in an immunization protocol to test for adjuvant activity. They enhanced the generation of specific antibodies against tetanus toxoid. Our results indicate that these unique compounds behave as agonists of TLR4, resulting in responses similar to those elicited by LPS. They display adjuvant activity in vivo and may be useful for the development of vaccine therapies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Drosophila , Glicoproteínas de Membrana/efeitos dos fármacos , Receptores de Superfície Celular/efeitos dos fármacos , Receptores Imunológicos/agonistas , Adjuvantes Imunológicos/química , Adolescente , Adulto , Animais , Linhagem Celular , Dissacarídeos/farmacologia , Feminino , Humanos , Interleucina-6/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mimetismo Molecular , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Receptor 4 Toll-Like , Receptores Toll-Like , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa