Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(19-20): 6775-6784, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36129484

RESUMO

Single-cell behaviors are essential during early-stage biofilm formation. In this study, we aimed to evaluate whether single-cell behaviors could be precisely and continuously manipulated by optogenetics. We thus established adaptive tracking illumination (ATI), a novel illumination method to precisely manipulate the gene expression and bacterial behavior of Pseudomonas aeruginosa on the surface at the single-cell level by using the combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation, and adaptive microscopy. ATI enables precise gene expression control by manipulating the optogenetic module gene expression and type IV pili (TFP)-mediated motility and microcolony formation during biofilm formation through bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) level modifications in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms could be controlled using ATI. Therefore, this novel method we established might markedly answer various questions or resolve problems in microbiology. KEY POINTS: • High-resolution spatial and continuous optogenetic control of individual bacteria. • Phenotype-specific optogenetic control of individual bacteria. • Capacity to control biologically relevant processes in engineered single cells.


Assuntos
Iluminação , Optogenética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Fímbrias Bacterianas/genética , Guanosina Monofosfato/metabolismo , Optogenética/métodos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
2.
Mikrochim Acta ; 189(12): 444, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367605

RESUMO

A sensitive and portable biosensor is proposed for simple detection of microRNAs based on a supersandwich hybridization signal amplification strategy and a glucometer transducer. The presence of a target microRNA triggers the cascading hybridization chain reaction to create long supersandwich assemblies containing multiple biotin-labelled DNA probes. Then, large amounts of biotin-modified invertase signal molecules can attach to the supersandwich assemblies to generate an amplified signal for the glucometer readout. With such supersandwich format, a single target microRNA can introduce many biotin-invertase signal molecules, resulting in a one-to-multiple amplification effect. Thus, the accurate quantification of microRNAs can be achieved in a simple detection fashion without the requirement of expensive or precise instrumentation. The linear range of the biosensor for microRNA was from 0.05 to 100 nM with a detection limit of 48 pM. The proposed biosensor can discriminate the target microRNA from its family members with high selectivity and can be successfully applied to the detection of target microRNA spiked in serum samples with a good recovery (96.0-108.0%). Therefore, the proposed biosensor is expected to provide more information for early and accurate cancer diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Eletroquímicas/métodos , Biotina , beta-Frutofuranosidase , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos
3.
Genomics ; 112(2): 1902-1915, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733270

RESUMO

In this investigation, whole-genome identification and functional characterization of the cotton dehydrin genes was carried out. A total of 16, 7, and 7 dehydrin proteins were identified in G. hirsutum, G. arboreum and G. raimondii, respectively. Through RNA sequence data and RT-qPCR validation, Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) were highly upregulated, and knockdown of the two genes, significantly reduced the ability of the plants to tolerate the effects of osmotic and salt stress. The VIGS-plants recorded significantly higher concentration levels of oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA), furthermore, the four stress responsive genes GhLEA2, Gh_D12G2017 (CDKF4), Gh_A07G0747 (GPCR) and a transcription factor, trihelix, Gh_A05G2067, were significantly downregulated in VIGS-plants, but upregulated in wild types under osmotic and salt stress condition. The result indicated that dehydrin proteins are vital for plants and can be exploited in developing a more osmotic and salt stress-resilient germplasm to boost and improve cotton production.


Assuntos
Gossypium/genética , Pressão Osmótica , Proteínas de Plantas/genética , Tolerância ao Sal , Gossypium/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo
4.
Molecules ; 23(4)2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614741

RESUMO

[Co2(L)Ce(OAc)3(CH3CH2OH)]·1.5CH3OH∙0.5CH2Cl2, a heterotrinuclear Co(II)-Ce(III) bis(salamo)-type complex with a symmetric bi(salamo)-type ligand H4L and an acyclic naphthalenediol moiety, was designed, synthesized and characterized by elemental analyses, FT-IR, UV-Vis and fluorescence spectroscopy and X-ray crystallography. The X-ray crystallographic investigation revealed the heterotrinuclear complex consisted of two Co(II) atoms, one Ce(III) atom, one (L)4‒ unit, three µ2-acetate ions, one coordinated ethanol molecule, one and half crystallization methanol molecule and half crystallization dichloromethane molecule. Two Co(II) atoms located in the N2O2 coordination spheres, are both hexacoordinated, with slightly distorted octahedral geometries. The Ce(III) atom is nine-coordinated and located in the O6 cavity possesses a single square antiprismatic geometry. In addition, supramolecular interactions exist in the Co(II)-Ce(III) complex. Two infinite 2D supramolecular structures are built via intermolecular O-H···O, C-H···O and C-H···π interactions, respectively.


Assuntos
Cério/química , Cobalto/química , Complexos de Coordenação/síntese química , Oximas/química , Complexos de Coordenação/química , Cristalografia por Raios X , Fluorescência , Ligação de Hidrogênio , Ligantes , Espectrometria de Fluorescência
5.
Learn Mem ; 21(4): 215-22, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639488

RESUMO

Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in Aplysia showed that a TrkB ligand is required for MAPK activation, long-term synaptic facilitation (LTF), and long-term memory (LTM) for sensitization. These studies indicate that neurotrophin-like molecules in Aplysia can act as key elements in a functionally conserved TrkB signaling pathway. Here we report that we have cloned and characterized a novel neurotrophic factor, Aplysia cysteine-rich neurotrophic factor (apCRNF), which shares classical structural and functional characteristics with mammalian neurotrophins. We show that apCRNF (1) is highly enriched in the CNS, (2) enhances neurite elongation and branching, (3) interacts with mammalian TrkB and p75(NTR), (4) is released from Aplysia CNS in an activity-dependent fashion, (5) facilitates MAPK activation in a tyrosine kinase dependent manner in response to sensitizing stimuli, and (6) facilitates the induction of LTF. These results show that apCRNF is a native neurotrophic factor in Aplysia that can engage the molecular and synaptic mechanisms underlying memory formation.


Assuntos
Aplysia/fisiologia , Potenciação de Longa Duração/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fatores de Crescimento Neural/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Aplysia/genética , Crescimento Celular , Células Cultivadas , Sistema Nervoso Central/fisiologia , Clonagem Molecular , Lymnaea , Dados de Sequência Molecular , Neurônios Motores/fisiologia , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso , Neuritos/fisiologia , Proteínas Tirosina Quinases/metabolismo , Ratos , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/fisiologia , Especificidade da Espécie
6.
J Am Chem Soc ; 136(19): 6838-41, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24773367

RESUMO

We report a new strategy to synthesize core-shell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core-shell nanoparticles with integrated optical, electronic, and magnetic properties.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Análise Espectral Raman/métodos , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/ultraestrutura , Neoplasias/diagnóstico , Oxirredução , Propriedades de Superfície
7.
Artigo em Inglês | MEDLINE | ID: mdl-38442634

RESUMO

In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 µg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.


Assuntos
Olea , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Triterpenos , Ácido Oleanólico/análise , Olea/química , Distribuição Contracorrente , Antibacterianos/farmacologia , Triterpenos/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124187, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547781

RESUMO

A bis(salamo)-like chemical sensor H3L ((1E,3E)-2-hydroxy-5-methylisophthalaldehyde O,O -di(3-((((E)-(2-hydroxynaphthalen-1-yl)methylene)amino)oxy)propyl) dioxime) was constructed. H3L is capable of recognizing B4O72- in H2O/DMF (1:9, v/v) solution by both fluorescent and colorimetric channels, bright green fluorescence was turned on when B4O72- was added to H3L and changed from colorless to yellow in natural light. The detection limit was 3.21 × 10-8 M. The identification has good anti-interfering ability, quickly responsive time (5 S) and broad pH detecting range (pH = 5-12). The mechanism of action was determined by 1H NMR titration, infrared spectrometry, HRMS spectra and further elucidated by theory calculations. The fluorescence imaging of bean sprouts and spiked recovery assays of actual water samples demonstrated the practical use of sensor H3L for the detection of B4O72-, which is expected to have applications for the detection of B4O72- in plants and the environment.

9.
ACS Synth Biol ; 12(7): 1961-1971, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37418677

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Camundongos , Animais , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Piocinas/farmacologia , Bactérias , Pseudomonas aeruginosa/genética
10.
Natl Sci Rev ; 10(5): nwad031, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37056431

RESUMO

Bacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as bacteria-mediated cancer therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in the BMCT process, via hierarchical modulation of the lighting power density of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatio-temporal and non-invasive control of bacterial genetic circuits in vivo. By combining computational modeling with a high-throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.

11.
Artigo em Inglês | MEDLINE | ID: mdl-23365600

RESUMO

Analgesia is a well-documented effect of acupuncture. A critical role in pain sensation plays the nervous system, including the GABAergic system and opioid receptor (OR) activation. Here we investigated regulation of GABA transporter GAT1 by δOR in rats and in Xenopus oocytes. Synaptosomes of brain from rats chronically exposed to opiates exhibited reduced GABA uptake, indicating that GABA transport might be regulated by opioid receptors. For further investigation we have expressed GAT1 of mouse brain together with mouse δOR and µOR in Xenopus oocytes. The function of GAT1 was analyzed in terms of Na(+)-dependent [(3)H]GABA uptake as well as GAT1-mediated currents. Coexpression of δOR led to reduced number of fully functional GAT1 transporters, reduced substrate translocation, and GAT1-mediated current. Activation of δOR further reduced the rate of GABA uptake as well as GAT1-mediated current. Coexpression of µOR, as well as µOR activation, affected neither the number of transporters, nor rate of GABA uptake, nor GAT1-mediated current. Inhibition of GAT1-mediated current by activation of δOR was confirmed in whole-cell patch-clamp experiments on rat brain slices of periaqueductal gray. We conclude that inhibition of GAT1 function will strengthen the inhibitory action of the GABAergic system and hence may contribute to acupuncture-induced analgesia.

12.
Food Chem ; 371: 131157, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583180

RESUMO

Ochratoxin A (OTA) is a very important mycotoxin. However, there are few studies on the removal of OTA in wine because of the great influence on product quality and difficulty in practical application. A nano-MgO-modified diatomite ceramic membrane (MCM) with a high positive charge was prepared and applied to remove OTA in wine. The isotherm adsorption between the positively charged membrane and OTA was in accordance with the Langmuir model, with a maximum adsorption capacity of 806 ng/g at 25 °C. All of the changes in adsorption enthalpy (ΔH), adsorption free energy (ΔG) and adsorption entropy (ΔS) were negative, which indicated that the combination of nano-MgO MCM and OTA was a spontaneous exothermic and nonspecific physical adsorption process. The concentrations of OTA in adsorption-treated wines were lower than 2 µg/kg, and the removal rates exceeded 92%. After OTA removal, the composition of wines was preserved to some extent.


Assuntos
Ocratoxinas , Vinho , Adsorção , Cerâmica , Ocratoxinas/análise , Eletricidade Estática , Vinho/análise
13.
J Gastrointest Oncol ; 13(6): 3329-3335, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636068

RESUMO

Background: Epstein Barr virus-associated smooth muscle tumors (EBV-SMT) are rare neoplasms that can occur in immunocompromised individuals. The native or transplanted liver is the most commonly involved site in post transplant patients. Systemic therapies have been utilized in EBV-SMT with modest activity. Case Description: We describe a 23-year-old female kidney transplant recipient who presented with acute myeloid leukemia (AML) and hepatic myeloid sarcoma (MS). Although it was not recognized initially, her liver biopsy revealing MS at diagnosis was posthumously found to have synchronous EBV-SMT. She underwent anthracycline based induction and achieved a complete remission of her AML by bone marrow biopsy. Due to a persistent hepatic mass, she was given salvage chemotherapy including fludarabine, etoposide, cytarabine, decitabine, and venetoclax for presumed refractory MS. Re-biopsy of the liver revealed the absence of MS and presence of EBV-SMT, which subsequently grew rapidly and precluded her from a liver tumor resection. The patient underwent sirolimus mammalian target of rapamycin (mTOR) therapy with palliative intent, but the patient's EBV-SMT progressed shortly after. At time of autopsy, the patient remained in complete remission from AML/MS, but was found to have multifocal progressive metastatic EBV-SMT. Conclusions: To our knowledge this is the first reported case of synchronous AML/MS and post transplant hepatic EBV-SMT that underwent treatment for AML/MS. Our report suggests that the chemotherapeutic agents utilized for AML/MS may have poor efficacy against EBV-SMT.

14.
Biomedicines ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35740430

RESUMO

The tumor microenvironment (TME) plays an essential role in the development, proliferation, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and peripheral blood, various phenotypically and functionally altered cells in the TME provide critical signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus, unraveling the complex interplay between AML and its microenvironment may have important clinical implications and are essential to directing the development of novel targeted therapies. This review summarizes recent advancements in our understanding of the AML TME and its ramifications on current immunotherapeutic strategies. We further review the role of natural products in modulating the TME to enhance response to immunotherapy.

15.
Pathogens ; 11(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145390

RESUMO

Background: High-titer convalescent plasma given early for COVID-19 may decrease progression into a severe infection. Here, we reported a study of serial antibody measurements in patients who received CP at our center and performed a systematic review of randomized trials on CP. Methods: Our center participated in the Mayo Clinic Expanded Access Program for COVID-19 Convalescent Plasma. Patients diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction at our center between April and August 2020 were included in the study if staffing was available for specimen collection. Through a colloidal gold immunochromatography assay, these patients' IgM and IgG antibody responses were measured at baseline (Day 0) and after transfusion (Day 1, 2, etc.). Donor CP antibody levels were measured as well. Results: 110 serum specimens were obtained from 21 COVID-19 patients, 16 of whom received CP. The median time from developing symptoms to receiving CP was 11 days (range 4−21). In 9 of 14 (64%) cases where both recipient and donor CP antibody levels were tested, donor COVID-19 IgG was lower than that of the recipient. Higher donor antibody levels compared with the recipient (R = 0.71, p < 0.01) and low patient IgG before CP transfusion (p = 0.0108) correlated with increasing patient IgG levels from baseline to Day 1. Among all patients, an increased COVID-19 IgG in the short-term and longitudinally was positively correlated with improved clinical outcomes (ρ = 0.69, p = 0.003 and ρ = 0.58, p < 0.006, respectively). Conclusions: In a real-world setting where donor CP was not screened for the presence of antibodies, CP in donors might have less COVID-19 IgG than in recipients. An increase in patient antibody levels in the short term and longitudinally was associated with improved clinical outcomes.

16.
J Neurosci ; 30(26): 8797-806, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592201

RESUMO

Postsynaptic release of Ca(2+) from intracellular stores is an important means of cellular signaling that mediates numerous forms of synaptic plasticity. Previous studies have identified a postsynaptic intracellular Ca(2+) requirement for a form of short-term plasticity, post-tetanic potentiation (PTP) at sensory neuron (SN)-motor neuron synapses in Aplysia. Here, we show that postsynaptic IP(3)-mediated Ca(2+) release in response to a presynaptic tetanus in an SN that induces PTP can confer transient plasticity onto a neighboring SN synapse receiving subthreshold activation. This heterosynaptic sharing of plasticity represents a dynamic, short-term synaptic enhancement of synaptic inputs onto a common postsynaptic target. Heterosynaptic sharing is blocked by postsynaptic disruption of Ca(2+)- and IP(3)-mediated signaling, and, conversely, it is mimicked by postsynaptic injection of nonhydrolyzable IP(3), and by photolysis of caged IP(3) in the MN. The molecular mechanism for heterosynaptic sharing involves metabotropic glutamate receptors and Homer-dependent interactions, indicating that Homer can facilitate the integration of Ca(2+)-dependent plasticity at neighboring postsynaptic sites and provides a postsynaptic mechanism for the spread of plasticity induced by presynaptic activation. Our results support a model in which postsynaptic summation of IP(3) signals from suprathreshold and subthreshold inputs results in molecular coincidence detection that gives rise to a novel form of heterosynaptic plasticity.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Aplysia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Proteínas de Arcabouço Homer , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/genética , Espaço Intracelular/metabolismo , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Sinapses/efeitos dos fármacos , Fatores de Tempo
17.
Nature ; 437(7061): 1027-31, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16222299

RESUMO

Drugs of abuse are known to cause persistent modification of neural circuits, leading to addictive behaviours. Changes in synaptic plasticity in dopamine neurons of the ventral tegmental area (VTA) may contribute to circuit modification induced by many drugs of abuse, including cocaine. Here we report that, following repeated exposure to cocaine in vivo, excitatory synapses to rat VTA dopamine neurons become highly susceptible to the induction of long-term potentiation (LTP) by correlated pre- and postsynaptic activity. This facilitated LTP induction is caused by cocaine-induced reduction of GABA(A) (gamma-aminobutyric acid) receptor-mediated inhibition of these dopamine neurons. In midbrain slices from rats treated with saline or a single dose of cocaine, LTP could not be induced in VTA dopamine neurons unless GABA-mediated inhibition was reduced by bicuculline or picrotoxin. However, LTP became readily inducible in slices from rats treated repeatedly with cocaine; this LTP induction was prevented by enhancing GABA-mediated inhibition using diazepam. Furthermore, repeated cocaine exposure reduced the amplitude of GABA-mediated synaptic currents and increased the probability of spike initiation in VTA dopamine neurons. This cocaine-induced enhancement of synaptic plasticity in the VTA may be important for the formation of drug-associated memory.


Assuntos
Cocaína/administração & dosagem , Cocaína/farmacologia , Dopamina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Mesencéfalo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Animais , Bicuculina/farmacologia , Diazepam/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A , Técnicas In Vitro , Masculino , Memória/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Ácido gama-Aminobutírico/farmacologia
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119263, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348093

RESUMO

A newly synthesized fluorescent chemosensor H6L was explored for detecting B4O72-, characterized by 1H NMR spectrum, mass spectrum and fluorescence spectra. During the detection process of B4O72-, the fluorescence is significantly enhanced and naked eye recognition can be performed under 365 nm UV light without any interference by other typical anions. The limit of detection is as low as 6.97 × 10-10 M. In addition, in order to broaden the application of salamo-based fluorescence sensors in the field of biology, except for the fluorescence imaging of HeLa cells, the first attempt of exogenous detection in zebrafish was conducted successfully.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Ânions , Células HeLa , Humanos , Espectrometria de Fluorescência
19.
Food Chem ; 337: 127761, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777565

RESUMO

Amino and thiolated aptamers are the main aptamers used to construct label-free electrochemical impedimetric aptasensors. In this study, the modification performance and electrochemical properties of amino aptamers and thiolated aptamers were studied in the construction of label-free impedimetric sensors. The results showed that the initial modification density of amino aptamers was higher than that of thiol aptamers. Aptamers can recognize and bind OTA to generate electrical signals. The higher the density of aptamer modification was, the better the electric signals were. If only considering the initial modification density, amino aptamers were more suitable for the preparation of aptasensors than thiolated aptamers. However, the modification density of the amino aptamer decreased with the prolonged immersion time in 1 mM HCl solution, which suggests that the stability of this sensor was poor. However, the thiolated aptamer maintained relatively constant density and could be reused. Thus, the thiolated aptasensor had a wide range and good reproducibility and stability for the determination of ochratoxin A (OTA). In addition, this study proved that gold nanoparticles play an important role in signal amplification by increasing the effective gold surface to fix more aptamers in the process of sensor preparation.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Impedância Elétrica , Eletroquímica , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Ocratoxinas/análise , Reprodutibilidade dos Testes
20.
ACS Synth Biol ; 10(6): 1520-1530, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34076414

RESUMO

Bacterial pathogens operate by tightly controlling the pathogenicity to facilitate invasion and survival in host. While small molecule inducers can be designed to modulate pathogenicity to perform studies of pathogen-host interaction, these approaches, due to the diffusion property of chemicals, may have unintended, or pleiotropic effects that can impose limitations on their use. By contrast, light provides superior spatial and temporal resolution. Here, using optogenetics we reengineered GacS of the opportunistic pathogen Pseudomonas aeruginosa, signal transduction protein of the global regulatory Gac/Rsm cascade which is of central importance for the regulation of infection factors. The resultant protein (termed YGS24) displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in the Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of the Pseudomonas aeruginosa strain PAO1 in a brain-heart infusion and of another strain, PA14, in slow killing media progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined hosts, even specific tissues, to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Optogenética/métodos , Proteínas Quinases/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/genética , Luz , Microrganismos Geneticamente Modificados , Engenharia de Proteínas/métodos , Proteínas Quinases/genética , Pseudomonas aeruginosa/genética , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética , Virulência/genética , Virulência/efeitos da radiação , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa