Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526655

RESUMO

Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity. Three modules, each incorporating both positive and negative associations, were overrepresented, thus acting as "network motifs." Furthermore, the overrepresentation of these network motifs is positively linked to species diversity globally. A theoretical model illustrates that these network motifs, based on competition between facilitated species or facilitation between inferior competitors, increase local persistence. Our findings suggest that the interplay of competition and facilitation is crucial for maintaining biodiversity.


Assuntos
Biodiversidade , Plantas , Comportamento Competitivo , Especificidade da Espécie
2.
Ann Bot ; 132(3): 429-442, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37632795

RESUMO

BACKGROUND AND AIMS: Understanding patterns and mechanisms of nurse plant facilitation is important to predict the resilience of arid/semi-arid ecosystems to climate change. We investigate whether water availability and nurse species turnover interact to shape the facilitation pattern of widespread legume shrubs along a large elevation gradient. We also investigate whether leaf δ13C of nurse plants can track the facilitation pattern. METHODS: We measured the relative interaction index (RII) of the number of species within and outside the canopy of two widespread legume shrub species (Caragana gerardiana and Caragana versicolor) alternatively distributed along a large elevation gradient in the Trans-Himalayas. We also assessed the proportional increase of species richness (ISR) at the community level using the paired plot data. To determine site-specific water availability, we measured the leaf δ13C of nurse shrubs and calculated the Thornthwaite moisture index (MI) for each elevation site. KEY RESULTS: Elevational variations in RII, ISR and δ13C were mainly explained by the MI when the effects of soil nitrogen and plant traits (leaf nitrogen and shrub size) were controlled. Variations in RII and ISR across the two nurse species were explained better by δ13C than by smoothly changing climatic factors along elevation. At the transition zone between the upper limit of C. gerardiana (4100 m) and the lower limit of C. versicolor (4200 m), RII and ISR were much higher in C. versicolor than in C. gerardiana under a similar MI. Such an abrupt increase in facilitation induced by nurse species replacement was well tracked by the variation of δ13C. CONCLUSIONS: Water availability and nurse species replacement are crucial to shaping facilitation patterns by legume shrubs along a large elevation gradient in dry mountainous regions, such as the Trans-Himalayas. Turnover in nurse species under global change might significantly alter the pattern of nurse plant facilitation associated with water availability, which can be well tracked by leaf δ13C.


Assuntos
Ecossistema , Fabaceae , Isótopos de Carbono , Água , Plantas , Verduras , Nitrogênio
3.
New Phytol ; 235(4): 1351-1364, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582952

RESUMO

The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea ) modulates leaf oxygen and carbon isotopic composition (δ18 O, δ13 C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18 O and δ13 C values, indicating large interspecific variation in time-integrated stomatal conductance and water-use efficiency. Structural equation modeling revealed that leaf Narea is a pivotal trait linked to multiple water-use traits. Leaf Narea was positively linked to both δ18 O and δ13 C, suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water-use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, such as legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18 O in dryland vegetation that is consistent with core principles of plant physiology.


Assuntos
Nitrogênio , Árvores , Isótopos de Carbono , Fotossíntese/fisiologia , Folhas de Planta , Transpiração Vegetal , Água
4.
Ann Bot ; 127(7): 919-929, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33640955

RESUMO

BACKGROUND AND AIMS: Plants in dry Mediterranean mountains experience a double climatic stress: at low elevations, high temperatures coincide with water shortage during summer, while at high elevations temperature decreases and water availability increases. Cushion plants often act as nurses by improving the microclimate underneath their canopies, hosting beneficiary species that may reciprocally modify their benefactors' microenvironment. We assess how the nurse cushion plant Arenaria tetraquetra subsp. amabilis adjusts its hydraulic system to face these complex abiotic and biotic constraints. METHODS: We evaluated intra-specific variation and co-ordination of stem xylem anatomy, leaf functional traits and plant architecture in response to elevation, aspect and the presence of beneficiary species in four A. tetraquetra subsp. amabilis populations in the Sierra Nevada mountains, southern Spain. KEY RESULTS: Xylem anatomical and plant architectural traits were the most responsive to environmental conditions, showing the highest mutual co-ordination. Cushions were more compact and had smaller, more isolated conductive vessels in the southern than in the northern aspect, which allow minimization of the negative impacts of more intense drought. Only vessel size, leaf mass per area and terminal branch length varied with elevation. Nurse cushions co-ordinated plant architecture and xylem traits, having higher canopy compactness, fewer leaves per branch and fewer, more isolated vessels than non-nurse cushions, which reflects the negative effects of beneficiary plants on nurse water status. In non-nurse cushions, plant architecture co-ordinated with leaf traits instead. The interacting effects of aspect and elevation on xylem traits showed that stress due to frost at high elevation constrained xylem anatomy in the north, whereas stress due to drought had a parallel effect in the south. CONCLUSIONS: Trait co-ordination was weaker under more demanding environmental conditions, which agrees with the hypothesis that trait independence allows plants to better optimize different functions, probably entailing higher adjustment potential against future environmental changes.


Assuntos
Árvores , Xilema , Secas , Folhas de Planta , Plantas , Água
5.
New Phytol ; 216(4): 1236-1246, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28262957

RESUMO

Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat.


Assuntos
Ecossistema , Fabaceae/fisiologia , Germinação , Desenvolvimento Vegetal , Microbiologia do Solo , Microclima , Solo/química , Espanha
6.
Glob Chang Biol ; 23(12): 5228-5236, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28614605

RESUMO

Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses.


Assuntos
Mudança Climática , Ecossistema , Micorrizas/fisiologia , Chuva , Microbiologia do Solo , Nitrogênio/análise , Fósforo , Simbiose
7.
Ecology ; 96(8): 2064-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405732

RESUMO

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion's influence. As a result, cushion plants support higher α-diversity and a larger species pool, but harbor assemblies with lower ß-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.


Assuntos
Biodiversidade , Plantas/classificação , Solo/química , Modelos Biológicos , Água
8.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238015

RESUMO

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Plantas , Aclimatação , Altitude , Ásia , Europa (Continente) , Modelos Lineares , Nova Zelândia , América do Norte , América do Sul
9.
New Phytol ; 204(2): 386-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24985245

RESUMO

Facilitative effects of some species on others are a major driver of biodiversity. These positive effects of a benefactor on its beneficiary can result in negative feedback effects of the beneficiary on the benefactor and reduced fitness of the benefactor. However, in contrast to the wealth of studies on facilitative effects in different environments, we know little about whether the feedback effects show predictable patterns of context dependence. We reanalyzed a global data set on alpine cushion plants, previously used to assess their positive effects on biodiversity and the nature of the beneficiary feedback effects, to specifically assess the context dependence of how small- and large-scale drivers alter the feedback effects of cushion-associated (beneficiary) species on their cushion benefactors using structural equation modelling. The effect of beneficiaries on cushions became negative when beneficiary diversity increased and facilitation was more intense. Local-scale biotic and climatic conditions mediated these community-scale processes, having indirect effects on the feedback effect. High-productivity sites demonstrated weaker negative feedback effects of beneficiaries on the benefactor. Our results indicate a limited impact of the beneficiary feedback effects on benefactor cushions, but strong context dependence. This context dependence may help to explain the ecological and evolutionary persistence of this widespread facilitative system.


Assuntos
Biodiversidade , Ecossistema , Retroalimentação Fisiológica , Plantas , Meio Ambiente , Modelos Teóricos
10.
New Phytol ; 202(1): 95-105, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24329871

RESUMO

Facilitative interactions are defined as positive effects of one species on another, but bidirectional feedbacks may be positive, neutral, or negative. Understanding the bidirectional nature of these interactions is a fundamental prerequisite for the assessment of the potential evolutionary consequences of facilitation. In a global study combining observational and experimental approaches, we quantified the impact of the cover and richness of species associated with alpine cushion plants on reproductive traits of the benefactor cushions. We found a decline in cushion seed production with increasing cover of cushion-associated species, indicating that being a benefactor came at an overall cost. The effect of cushion-associated species was negative for flower density and seed set of cushions, but not for fruit set and seed quality. Richness of cushion-associated species had positive effects on seed density and modulated the effects of their abundance on flower density and fruit set, indicating that the costs and benefits of harboring associated species depend on the composition of the plant assemblage. Our study demonstrates 'parasitic' interactions among plants over a wide range of species and environments in alpine systems, and we consider their implications for the possible selective effects of interactions between benefactor and beneficiary species.


Assuntos
Ecossistema , Aptidão Genética , Fenômenos Fisiológicos Vegetais , Biodiversidade , Flores/fisiologia , Frutas/fisiologia , Modelos Lineares , Sementes/fisiologia , Especificidade da Espécie
11.
J Environ Manage ; 131: 280-97, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184530

RESUMO

Mountainous rural communities have traditionally managed their land extensively, resulting in land uses that provide important ecosystem services for both rural and urban areas. Over recent decades, these communities have undergone drastic changes in economic structure, population size and land use. Our understanding of the exact mechanisms that drive these changes is limited, and there is also a lack of integrative approaches to enable decision makers to steer rural development towards a more sustainable path. In this study, we build a dynamic simulation model to calculate the trade-offs between the provisions of two ecosystem services - landscape aesthetic value and water supply for human use - and the economic development associated with different land use changes. The study area for the simulation comprises two rural communities located in southern Spain. Our results show trade-offs between economic development and the provision of the selected ecosystem services in the selected study area. Land use intensification results in economic development but is not enough to prevent population loss and has a negative impact on both the water supply and on aesthetic services. We conclude that more proactive management policies are needed to mitigate a loss in ecosystem services. Simulation models like ours may facilitate the choice of these policies, as they could test the result of land use planning policies contributing therefore, to a more integrative and sustainable management of rural communities.


Assuntos
Conservação dos Recursos Naturais/métodos , Desenvolvimento Econômico , Ecossistema , Simulação por Computador , Espanha
12.
Front Plant Sci ; 14: 1137365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844071

RESUMO

Introduction: Shrub promotes the survival, growth and reproduction of understory species by buffering the environmental extremes and improving limited resources (i.e., facilitation effect) in arid and semiarid regions. However, the importance of soil water and nutrient availability on shrub facilitation, and its trend along a drought gradient have been relatively less addressed in water-limited systems. Methods: We investigated species richness, plant size, soil total nitrogen and dominant grass leaf δ13C within and outside the dominant leguminous cushion-like shrub Caragana versicolor along a water deficit gradient in drylands of Tibetan Plateau. Results: We found that C. versicolor increased grass species richness but had a negative effect on annual and perennial forbs. Along the water deficit gradient, plant interaction assessed by species richness (RIIspecies) showed a unimodal pattern with shift from increase to decrease, while plant interaction assessed by plant size (RIIsize) did not vary significantly. The effect of C. versicolor on soil nitrogen, rather than water availability, determined its overall effect on understory species richness. Neither the effect of C. versicolor on soil nitrogen nor water availability affected plant size. Discussion: Our study suggests that the drying tendency in association with the recent warming trends observed in drylands of Tibetan Plateau, will likely hinder the facilitation effect of nurse leguminous shrub on understories if moisture availability crosses a critical minimum threshold.

13.
New Phytol ; 193(4): 830-841, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22250761

RESUMO

Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate.


Assuntos
Raízes de Plantas/fisiologia , Água , Ecossistema , Micorrizas , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/microbiologia , Solo
14.
New Phytol ; 196(3): 824-834, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22978646

RESUMO

Here, we incorporate facilitation into trait-based community assembly theory by testing two mutually compatible facilitative mechanisms: changes in the environmental filter, causing either an increase in the range of trait values (i.e. a range expansion effect) and/or a shift in trait distributions (i.e. a range shift effect); and changes in trait spacing, suggesting an effect on niche differentiation. We analyzed the distribution of three functional traits - leaf dry matter content, specific leaf area and lateral spread - of plant communities dominated by a cushion-forming foundation species at four sites differing in elevation and aspect. We found support for environmental filtering and niche differentiation mechanisms by cushions, with filtering effects (in particular range shifts) increasing with environmental severity at higher elevation. The effect size of cushions on trait distribution was similar to that of environmental gradients caused by elevation and aspect. The consideration of intraspecific trait variability improved the detection of cushion effects on trait distributions. Our results highlight the importance of facilitation in the modification of taxonomic and functional diversity of ecological communities, and indicate that facilitation can occur through combined effects on environmental filtering and niche differentiation, with strong environmental context dependence of each mechanism.


Assuntos
Ecossistema , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Altitude , Análise de Variância , Modelos Lineares , Modelos Biológicos , Folhas de Planta/fisiologia , Plantas/classificação , Plantas/metabolismo , Solo/química , Espanha , Água/metabolismo
15.
Oecologia ; 162(1): 11-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19730891

RESUMO

The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively affected by Pistacia. Salt also seems to mediate the interaction between the two species, negating the potential positive effects of an additional water source via hydraulic lift.


Assuntos
Carbono/metabolismo , Juniperus/metabolismo , Pistacia/metabolismo , Tolerância ao Sal , Água/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , Ecossistema , Juniperus/anatomia & histologia , Pistacia/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Solo , Especificidade da Espécie , Água/química
16.
Oecologia ; 163(4): 855-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20364271

RESUMO

Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.


Assuntos
Asteraceae/fisiologia , Fabaceae/fisiologia , Modelos Biológicos , Raízes de Plantas/fisiologia , Transpiração Vegetal , Chile , Clima , Ecossistema , Solo/análise , Espanha , Água/análise , Água/fisiologia
17.
J Environ Manage ; 91(12): 2688-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705387

RESUMO

Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO(2) year(-1) in 1921 to 60,635 t CO(2) year(-1) in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO(2) year(-1) by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO(2) fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas.


Assuntos
Ciclo do Carbono , Ecossistema , Geografia , Plantas , Planejamento Social , Grão Comestível , Região do Mediterrâneo , Pinus , Quercus , Espanha
18.
Am Nat ; 174(6): 919-27; discussion 928-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19860539

RESUMO

Ricklefs's recent call to investigate ecological processes at large scales helps focus ecologists' attention on an undoubtedly important topic. However, we believe that some of his accompanying arguments for the primacy of such work and, in particular, for the need to "disintegrate" the local community concept are flawed. We revisit Ricklefs's main tenets and demonstrate that research on local communities is a vital part of understanding processes and diversity across a range of spatial and temporal scales. The integration of research across spatial scales expands our horizons and understanding of ecology and evolution, and this should not be unnecessarily constrained to one extreme or the other.


Assuntos
Ecossistema , Modelos Teóricos , Biodiversidade , Evolução Biológica , Dinâmica Populacional
19.
Biol Lett ; 5(5): 577-9, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19535365

RESUMO

The 2009 British Ecological Society's Annual Symposium entitled 'Facilitation in Plant Communities' was held at the University of Aberdeen, Scotland, from 20 to 22 April 2009. This was the first ever international meeting dedicated to the rapidly expanding field of facilitation. The aim of the symposium was to assess the current 'state-of-play' by contrasting findings from different systems and by looking outwards in an attempt to integrate this field with other related fields. It was also aimed at understanding how knowledge of facilitation can help understand community dynamics and be applied to ecosystem restoration. The symposium identified several key areas where future work is likely to be most profitable.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Evolução Biológica , Dinâmica Populacional
20.
Sci Adv ; 5(11): eaaz1834, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807715

RESUMO

Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change influences PSFs through the performance of interacting species and altered community composition resulting from changes in species distributions. Climate change thus affects plant inputs into the soil subsystem via litter and rhizodeposits and alters the composition of the living plant roots with which mutualistic symbionts, decomposers, and their natural enemies interact. Many of these plant-soil interactions are species-specific and are greatly affected by temperature, moisture, and other climate-related factors. We make a number of predictions concerning climate change effects on PSFs and consequences for vegetation-soil-climate feedbacks while acknowledging that they may be context-dependent, spatially heterogeneous, and temporally variable.


Assuntos
Biodiversidade , Mudança Climática , Modelos Biológicos , Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa