Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(3): e202215374, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36394188

RESUMO

The ability to construct C(sp3 )-C(sp3 ) bonds from easily accessible reagents is a crucial, yet challenging endeavor for synthetic organic chemists. Herein, we report the realization of such a cross-coupling reaction, which combines N-sulfonyl hydrazones and C(sp3 )-H donors through a diarylketone-enabled photocatalytic hydrogen atom transfer and a subsequent fragmentation of the obtained alkylated hydrazide. This mild and metal-free protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products and is tolerant of a variety of functional groups. The application of this chemistry further provides a preparatively useful route to various medicinally-relevant compounds, such as homobenzylic ethers, aryl ethyl amines, ß-amino acids and other moieties which are commonly encountered in approved pharmaceuticals, agrochemicals and natural products.


Assuntos
Aminas , Hidrogênio , Catálise , Hidrogênio/química , Aminas/química , Metais , Alquilação
2.
Angew Chem Int Ed Engl ; 60(39): 21277-21282, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34329531

RESUMO

Herein, we report a photocatalytic procedure that enables the acylation/arylation of unfunctionalized alkyl derivatives in flow. The method exploits the ability of the decatungstate anion to act as a hydrogen atom abstractor and produce nucleophilic carbon-centered radicals that are intercepted by a nickel catalyst to ultimately forge C(sp3 )-C(sp2 ) bonds. Owing to the intensified conditions in flow, the reaction time can be reduced from 12-48 hours to only 5-15 minutes. Finally, kinetic measurements highlight how the intensified conditions do not change the reaction mechanism but reliably speed up the overall process.

3.
Nat Commun ; 15(1): 1509, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374079

RESUMO

In contemporary drug discovery, enhancing the sp3-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp3)-C(sp3) cross-coupling platform. We demonstrate its synthetic value as a safer, broadly applicable C1 homologation of carboxylic acids, offering an alternative to the traditional Arndt-Eistert reaction. Additionally, our method provides direct access to cyclic and acyclic ß-arylethylamines using diverse aldehyde-derived sulfonyl hydrazones. Notably, the methodology proves to be compatible with the late-stage functionalization of peptides on solid-phase, streamlining the modification of intricate peptides without the need for exhaustive de-novo synthesis.

4.
Chem Sci ; 13(24): 7325-7331, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799818

RESUMO

The late-stage introduction of allyl groups provides an opportunity to synthetic organic chemists for subsequent diversification, furnishing a rapid access to new chemical space. Here, we report the development of a modular synthetic sequence for the allylation of strong aliphatic C(sp3)-H bonds. Our sequence features the merger of two distinct steps to accomplish this goal, including a photocatalytic Hydrogen Atom Transfer and an ensuing Horner-Wadsworth-Emmons (HWE) reaction. This practical protocol enables the modular and scalable allylation of valuable building blocks and has been applied to structurally complex molecules.

5.
Chem Commun (Camb) ; 57(78): 9956-9967, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34495026

RESUMO

The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa