Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 126(12): 1473-82, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26228485

RESUMO

RhoA GTPase has been shown in vitro in cell lines and in vivo in nonmammalian organisms to regulate cell division, particularly during cytokinesis and abscission, when 2 daughter cells partition through coordinated actomyosin and microtubule machineries. To investigate the role of this GTPase in the rapidly proliferating mammalian erythroid lineage, we developed a mouse model with erythroid-specific deletion of RhoA. This model was proved embryonic lethal as a result of severe anemia by embryonic day 16.5 (E16.5). The primitive red blood cells were enlarged, poikilocytic, and frequently multinucleated, but were able to sustain life despite experiencing cytokinesis failure. In contrast, definitive erythropoiesis failed and the mice died by E16.5, with profound reduction of maturing erythroblast populations within the fetal liver. RhoA was required to activate myosin-regulatory light chain and localized at the site of the midbody formation in dividing wild-type erythroblasts. Cytokinesis failure caused by RhoA deficiency resulted in p53 activation and p21-transcriptional upregulation with associated cell-cycle arrest, increased DNA damage, and cell death. Our findings demonstrate the role of RhoA as a critical regulator for efficient erythroblast proliferation and the p53 pathway as a powerful quality control mechanism in erythropoiesis.


Assuntos
Actomiosina/metabolismo , Citocinese , Eritroblastos/citologia , Eritropoese , Proteína Supressora de Tumor p53/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Eritroblastos/metabolismo , Eritroblastos/patologia , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Blood ; 121(11): 2099-107, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23349388

RESUMO

Chronic inflammation has emerged as an important pathogenic mechanism in sickle cell disease (SCD). One component of this inflammatory response is oxidant stress mediated by reactive oxygen species (ROS) generated by leukocytes, endothelial cells, plasma enzymes, and sickle red blood cells (RBC). Sickle RBC ROS generation has been attributed to sickle hemoglobin auto-oxidation and Fenton chemistry reactions catalyzed by denatured heme moieties bound to the RBC membrane. In this study, we demonstrate that a significant part of ROS production in sickle cells is mediated enzymatically by NADPH oxidase, which is regulated by protein kinase C, Rac GTPase, and intracellular Ca(2+) signaling within the sickle RBC. Moreover, plasma from patients with SCD and isolated cytokines, such as transforming growth factor ß1 and endothelin-1, enhance RBC NADPH oxidase activity and increase ROS generation. ROS-mediated damage to RBC membrane components is known to contribute to erythrocyte rigidity and fragility in SCD. Erythrocyte ROS generation, hemolysis, vaso-occlusion, and the inflammatory response to tissue damage may therefore act in a positive-feedback loop to drive the pathophysiology of sickle cell disease. These findings suggest a novel pathogenic mechanism in SCD and may offer new therapeutic targets to counteract inflammation and RBC rigidity and fragility in SCD.


Assuntos
Anemia Falciforme/metabolismo , Citocinas/farmacologia , Eritrócitos/enzimologia , NADPH Oxidases/fisiologia , Estresse Oxidativo , Proteína Quinase C/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Cálcio/farmacologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Criança , Citocinas/sangue , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Eritrócitos/patologia , Eritrócitos/fisiologia , Humanos , Isoenzimas/metabolismo , Modelos Biológicos , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
3.
Blood ; 119(25): 6118-27, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22461493

RESUMO

To understand the role of cytoskeleton and membrane signaling molecules in erythroblast enucleation, we developed a novel analysis protocol of multiparameter high-speed cell imaging in flow. This protocol enabled us to observe F-actin and phosphorylated myosin regulatory light chain (pMRLC) assembled into a contractile actomyosin ring (CAR) between nascent reticulocyte and nucleus, in a population of enucleating erythroblasts. CAR formation and subsequent enucleation were not affected in murine erythroblasts with genetic deletion of Rac1 and Rac2 GTPases because of compensation by Rac3. Pharmacologic inhibition or genetic deletion of all Rac GTPases altered the distribution of F-actin and pMRLC and inhibited enucleation. Erythroblasts treated with NSC23766, cytochalasin-D, colchicine, ML7, or filipin that inhibited Rac activity, actin or tubulin polymerization, MRLC phosphorylation, or lipid raft assembly, respectively, exhibited decreased enucleation efficiency, as quantified by flow cytometry. As assessed by high-speed flow-imaging analysis, colchicine inhibited erythroblast polarization, implicating microtubules during the preparatory stage of enucleation, whereas NSC23766 led to absence of lipid raft assembly in the reticulocyte-pyrenocyte border. In conclusion, enucleation is a multistep process that resembles cytokinesis, requiring establishment of cell polarity through microtubule function, followed by formation of a contractile actomyosin ring, and coalescence of lipid rafts between reticulocyte and pyrenocyte.


Assuntos
Núcleo Celular/metabolismo , Citoesqueleto/fisiologia , Eritroblastos/fisiologia , Reticulócitos/fisiologia , Actinas/metabolismo , Animais , Transporte Biológico/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Núcleo Celular/fisiologia , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Eritroblastos/citologia , Eritroblastos/ultraestrutura , Eritropoese/genética , Eritropoese/fisiologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Reticulócitos/citologia , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/fisiologia
4.
Pediatr Blood Cancer ; 56(5): 840-2, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20949590

RESUMO

We report a novel glucose-6-phosphate dehydrogenase (G6PD) mutation, which we propose to name G6PD Cincinnati (c.1037A > T, p.N346I), found in combination with G6PD Gastonia (c.637G > T, p.V213L) in an infant who presented with neonatal cholestasis. The G6PD Cincinnati mutation results in a non-conservative amino acid substitution at the tetramer interface disturbing its formation, as seen by native gel electrophoresis and immunoblotting. G6PD Gastonia disrupts dimerization of the enzyme and by itself causes chronic non-spherocytic hemolytic anemia. The G6PD Cincinnati mutation may have aggravated the clinical picture of G6PD Gastonia with the result of severe perinatal hemolysis causing cholestasis and associated liver injury.


Assuntos
Colestase/etiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Hiperbilirrubinemia Neonatal/etiologia , Mutação/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Colestase/enzimologia , Colestase/patologia , DNA/genética , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Humanos , Hiperbilirrubinemia Neonatal/enzimologia , Hiperbilirrubinemia Neonatal/patologia , Recém-Nascido , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
5.
Blood Cells Mol Dis ; 45(1): 41-5, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20231105

RESUMO

The small Rho GTPases Rac1 and Rac2 regulate actin structures and mediate reactive oxygen species (ROS) production via NADPH oxidase in a variety of cells. We have demonstrated that deficiency of Rac1 and Rac2 GTPases in mice disrupts the normal hexagonal organization of the RBC cytoskeleton and reduces erythrocyte deformability. This is associated with increased phosphorylation of adducin at Ser-724, (corresponding to Ser-726 in human erythrocytes), a domain target of protein kinase C (PKC). PKC phosphorylates adducin and leads to decreased F-actin capping and dissociation of spectrin from actin, implicating a significant role of such phosphorylation in cytoskeletal remodeling. We evaluated adducin phosphorylation in erythrocytes from patients with sickle cell disease and found it consistently increased at Ser-726. In addition, ROS concentration is elevated in sickle erythrocytes by 150-250% compared to erythrocytes from normal control individuals. Here, we review previous studies demonstrating that altered phosphorylation of erythrocyte cytoskeletal proteins and increased ROS production result in disruption of cytoskeleton stability in healthy and sickle cell erythrocytes. We discuss in particular the known and potential roles of protein kinase C and the Rac GTPases in these two processes.


Assuntos
Anemia Falciforme/metabolismo , Proteínas do Citoesqueleto/metabolismo , Eritrócitos/patologia , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Anemia Falciforme/enzimologia , Animais , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Humanos
6.
Haematologica ; 95(1): 27-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20065081

RESUMO

BACKGROUND: The small Rho GTPases Rac1 and Rac2 have both overlapping and distinct roles in actin organization, cell survival, and proliferation in various hematopoietic cell lineages. The role of these Rac GTPases in erythropoiesis has not yet been fully elucidated. DESIGN AND METHODS: Cre-recombinase-induced deletion of Rac1 genomic sequence was accomplished on a Rac2-null genetic background, in mouse hematopoietic cells in vivo. The erythroid progenitors and precursors in the bone marrow and spleen of these genetically engineered animals were evaluated by colony assays and flow cytometry. Apoptosis and proliferation of the different stages of erythroid progenitors and precursors were evaluated by flow cytometry. RESULTS: Erythropoiesis in Rac1(-/-);Rac2(-/-) mice is characterized by abnormal burst-forming unit-erythroid colony morphology and decreased numbers of megakaryocyte-erythrocyte progenitors, erythroid colony-forming units, and erythroblasts in the bone marrow. In contrast, splenic erythropoiesis is increased. Combined Rac1 and Rac2 deficiency compromises proliferation of the megakaryocyte-erythrocyte progenitor population in the bone marrow, while it allows increased survival and proliferation of megakaryocyte-erythrocyte progenitors in the spleen. Conclusions These data suggest that Rac1 and Rac2 GTPases are essential for normal bone marrow erythropoiesis but that they are dispensable for erythropoiesis in the spleen, implying different signaling pathways for homeostatic and stress erythropoiesis.


Assuntos
Células da Medula Óssea/enzimologia , Eritropoese/fisiologia , Neuropeptídeos/fisiologia , Baço/enzimologia , Proteínas rac de Ligação ao GTP/fisiologia , Animais , Células da Medula Óssea/citologia , Eritroblastos/enzimologia , GTP Fosfo-Hidrolases/sangue , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/sangue , Neuropeptídeos/genética , Especificidade de Órgãos/genética , Baço/citologia , Fatores de Tempo , Proteínas rac de Ligação ao GTP/sangue , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP , Proteína RAC2 de Ligação ao GTP
7.
J Vis Exp ; (88)2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24962543

RESUMO

Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters "aspect ratio" of a cell in the bright-field channel that aids in the recognition of elongated cells and "delta centroid XY Ter119/Draq5" that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.


Assuntos
Eritroblastos/citologia , Citometria de Fluxo/métodos , Animais , Técnicas de Cultura de Células/métodos , Núcleo Celular/química , Eritropoese , Camundongos , Coloração e Rotulagem/métodos
8.
Blood ; 110(12): 3853-61, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17702896

RESUMO

The Rho GTPase Cdc42 regulates adhesion, migration, and homing, as well as cell cycle progression, of hematopoietic stem cells, but its role in multilineage blood development remains unclear. We report here that inducible deletion of cdc42 in cdc42-floxed mouse bone marrow by the interferon-responsive, Mx1-Cre-mediated excision led to myeloid and erythroid developmental defects. Cdc42 deletion affected the number of early myeloid progenitors while suppressing erythroid differentiation. Cdc42-deficient mice developed a fatal myeloproliferative disorder manifested by significant leukocytosis with neutrophilia, myeloid hyperproliferation, and myeloid cell infiltration into distal organs. Concurrently, Cdc42 deficiency caused anemia and splenomegaly accompanied with decreased bone marrow erythroid burst-forming units (BFU-Es) and colony-forming units-erythroid (CFU-Es) activities and reduced immature erythroid progenitors, suggesting that Cdc42 deficiency causes a block in the early stage of erythropoiesis. Cdc42 activity is responsive to stimulation by SCF, IL3, SDF-1alpha, and fibronectin. The increased myelopoiesis and decreased erythropoiesis of the knockout mice are associated with an altered gene transcription program in hematopoietic progenitors, including up-regulation of promyeloid genes such as PU.1, C/EBP1alpha, and Gfi-1 in the common myeloid progenitors and granulocyte-macrophage progenitors and down-regulation of proerythroid gene such as GATA-2 in the megakaryocyte-erythroid progenitors. Thus, Cdc42 is an essential regulator of the balance between myelopoiesis and erythropoiesis.


Assuntos
Eritropoese , Regulação Enzimológica da Expressão Gênica , Mielopoese , Proteína cdc42 de Ligação ao GTP/metabolismo , Anemia/enzimologia , Anemia/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/genética , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células , Quimiocina CXCL12/farmacologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Células Precursoras Eritroides/enzimologia , Eritropoese/genética , Fibronectinas/farmacologia , Fator de Transcrição GATA2/biossíntese , Fator de Transcrição GATA2/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/genética , Interleucina-3/farmacologia , Camundongos , Camundongos Knockout , Células Progenitoras Mieloides/enzimologia , Mielopoese/genética , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteína cdc42 de Ligação ao GTP/genética
9.
Proc Natl Acad Sci U S A ; 104(16): 6794-9, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17420462

RESUMO

Normal production of RBCs requires that the antiapoptotic protein Bcl-xl be induced at end stages of differentiation in response to erythropoietin (Epo) signaling. The critical proapoptotic pathways inhibited by Bcl-xl in erythroblasts are unknown. We used gene targeting in the mouse to evaluate the BH3-only factor Nix, which is transcriptionally up-regulated during Epo-stimulated in vitro erythrocyte differentiation. Nix null mice are viable and fertile. Peripheral blood counts revealed a profound reticulocytosis and thrombocytosis despite normal serum Epo levels and blood oxygen tension. Nix null mice exhibited massive splenomegaly, with splenic and bone marrow erythroblastosis and reduced apoptosis in vivo during erythrocyte maturation. Hematopoietic progenitor populations were unaffected. Cultured Nix null erythroid cells were hypersensitive to Epo and resistant to apoptosis stimulated by cytokine deprivation and calcium ionophore. Transcriptional profiling of Nix null spleens revealed increased expression of cell cycle and erythroid genes, including Bcl-xl, and diminished expression of cell death and B cell-related genes. Thus, cell-autonomous Nix-mediated apoptosis in opposition to the Epo-induced erythroblast survival pathway appears indispensable for regulation of erythrocyte production and maintenance of hematological homeostasis. These results suggest that physiological codependence and coordinated regulation of pro- and antiapoptotic Bcl2 family members may represent a general regulatory paradigm in hematopoiesis.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Eritroblastos/patologia , Eritrócitos Anormais/patologia , Eritropoese/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Eritroblastos/metabolismo , Eritrócitos Anormais/metabolismo , Eritropoetina/fisiologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/fisiologia , Permeabilidade , Transdução de Sinais/genética
10.
Blood ; 108(12): 3637-45, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16882712

RESUMO

Actin oligomers are a significant structural component of the erythrocyte cytoskeleton. Rac1 and Rac2 GTPases regulate actin structures and have multiple overlapping as well as distinct roles in hematopoietic cells; therefore, we studied their role in red blood cells (RBCs). Conditional gene targeting with a loxP-flanked Rac1 gene allowed Crerecombinase-induced deletion of Rac1 on a Rac2 null genetic background. The Rac1(-/-);Rac2(-/-) mice developed microcytic anemia with a hemoglobin drop of about 20% and significant anisocytosis and poikilocytosis. Reticulocytes increased more than 2-fold. Rac1(-/-);Rac2(-/-) RBCs stained with rhodamine-phalloidin demonstrated F-actin meshwork gaps and aggregates under confocal microscopy. Transmission electron microscopy of the cytoskeleton demonstrated junctional aggregates and pronounced irregularity of the hexagonal spectrin scaffold. Ektacytometry confirmed that these cytoskeletal changes in Rac1(-/-);Rac2(-/-) erythrocytes were associated with significantly decreased cellular deformability. The composition of the cytoskeletal proteins was altered with an increased actin-to-spectrin ratio and increased phosphorylation (Ser724) of adducin, an F-actin capping protein. Actin and phosphorylated adducin of Rac1(-/-);Rac2(-/-) erythrocytes were more easily extractable by Triton X-100, indicating weaker association to the cytoskeleton. Thus, deficiency of Rac1 and Rac2 GTPases in mice alters actin assembly in RBCs and causes microcytic anemia with reticulocytosis, implicating Rac GTPases as dynamic regulators of the erythrocyte cytoskeleton organization.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Eritrocítica/metabolismo , Neuropeptídeos/metabolismo , Reticulócitos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/genética , Anemia/genética , Anemia/metabolismo , Anemia/patologia , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Membrana Eritrocítica/genética , Membrana Eritrocítica/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/deficiência , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Reticulócitos/ultraestrutura , Reticulocitose/genética , Espectrina/metabolismo , Proteínas rac de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa