RESUMO
The reproductive process in various species has undergone evolutionary adaptations at both the physiological and molecular levels, playing a significant role in maintaining their populations. In lepidopteran insects, the spermatophore is a unique structure formed in the female reproductive system, in which sperm storage and activation take place. It is known that the formation of the spermatophore is regulated by seminal fluid proteins derived from males. However, studies investigating the genetic mechanisms behind spermatophore formation in lepidopterans have been limited. In this study, our focus was on SPSL1, a gene that encodes a trypsin-type seminal fluid protein in Spodoptera frugiperda, a pest species with global invasive tendencies. Our findings revealed that SPSL1 expression was predominantly observed in the male reproductive tracts, and the disruption of this gene resulted in male sterility. Surprisingly, fluorescence analysis indicated that the absence of SPSL1 did not affect spermatogenesis or sperm migration within the male reproductive system. However, when females mated with SPSL1-mutant males, several defects were observed. These included disruptions in spermatophore formation, sperm activation in the copulatory bursae, and sperm migration into the spermathecae. Additionally, mass spectrometry analysis highlighted reduced levels of energy-related metabolites, suggesting that SPSL1 plays an essential role in promoting hydrolysis reactions during copulation. Consequently, our study demonstrates that SPSL1 is crucial for male fertility due to its functions in spermatophore formation and sperm activation. This research provides valuable insights into the genetic factors underlying reproductive processes in lepidopteran insects and sheds light on potential strategies for controlling invasive pest populations.
Assuntos
Sêmen , Espermatogônias , Animais , Masculino , Feminino , Espermatogônias/fisiologia , Spodoptera/genética , Espermatozoides/fisiologia , Espermatogênese/genética , InsetosRESUMO
The yellow gene family plays a crucial role in insect pigmentation. It has potential for use as a visible marker gene in genetic manipulation and transgenic engineering in several model and non-model insects. Sadly, yellow genes have rarely been identified in Stratiomyidae species and the functions of yellow genes are relatively unknown. In the present study, we first manually annotated and curated 10 yellow genes in the black soldier fly (BSF), Hermetia illucens (Stratiomyidae). Then, the conserved amino acids in the major royal jelly proteins (MRJPs) domain, structural architecture and phylogenetic relationship of yellow genes in BSF were analyzed. We found that the BSF yellow-y, yellow-c and yellow-f genes are expressed at all developmental stages, especially in the prepupal stage. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we successfully disrupted yellow-y, yellow-c and yellow-f in the BSF. Consequently, the mutation of yellow-y clearly resulted in a pale-yellow body color in prepupae, pupae and adults, instead of the typical black body color of the wild type. However, the mutation of yellow-c or yellow-f genes did not result in any change in color of the insects, when compared with the wild type. Our study indicates that the BSF yellow-y gene plays a role in body pigmentation, providing an optimal marker gene for the genetic manipulation of BSF.
RESUMO
The black cutworm (BCW), Agrotis ipsilon, is a worldwide polyphagous and underground pest that causes a high level of economic loss to a wide range of crops through the damage of roots. This species performs non-directed migration throughout East and Southeast Asia seasonally. Lack of a genome information has limited further studies on its unique biology and the development of novel management approaches. In this study, we present a 476 Mb de novo assembly of BCW, along with a consensus gene set of 14,801 protein-coding gene models. Quality controls show that both genome assembly and annotations are high-quality and mostly complete. We focus manual annotation and comparative genomics on gene families that related to the unique attributes of this species, such as nocturnality, long-distance migration, and host adaptation. We find that the BCW genome encodes a similar gene repertoire in various migration-related gene families to the diural migratory butterfly Danaus plexiipus, with additional copies of long wavelength opsin and two eye development-related genes. On the other hand, we find that the genomes of BCW and many other polyphagous lepidopterans encode many more gustatory receptor genes, particularly the lineage-specific expanded bitter receptor genes, than the mono- or oligo-phagous species, suggesting a common role of gustatory receptors (GRs) expansion in host range expansion. The availability of a BCW genome provides valuable resources to study the molecular mechanisms of non-directed migration in lepidopteran pests and to develop novel strategies to control migratory nocturnal pests.
Assuntos
Genoma , Mariposas/genética , Animais , Masculino , FilogeniaRESUMO
The Asian corn borer (ACB) is the most devastating pest on maize in the western Pacific region of Asia. Despite broad interests in insecticide resistance, seasonal adaptation, and larval color mimicry regarding the ACB system, lacking of reference genomic information and a powerful gene editing approach have hindered the in-depth studies of these aspects. Here we present a 455.7 Mb draft genome of ACB with 98.4% completeness. Comparative genomics analysis showed an evident expansion in gene families of gustatory receptors (105), which is related to polyphagous characteristics. Based on the comparative transcriptome analysis of resistant and susceptible ACB against Bt Cry1Ab toxin, we identified 26 genes related to Cry1Ab resistance. Additionally, transcriptomics of insects exposed to conditions of low temperature and diapause (LT) vs. room temperature and diapause (RT) provided insights into the genetic mechanisms of cold adaptation. We also successfully developed an efficient CRISPR/Cas9-based genome editing system and applied it to explore the role of color pattern genes in the ecological adaptation of ACB. Taken together, our study provides a fully annotated high-quality reference genome and efficient gene editing system to realize the potential of ACB as a study system to address important biological questions such as insecticide resistance, seasonal adaptation, and coloration. These valuable genomic resources will also benefit the development of novel strategies for maize pest management.