Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Environ Manage ; 363: 121332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850906

RESUMO

This paper presents the synthesis of visible light-responsive ternary nanocomposites composed of cuprous oxide (Cu2O), tungsten trioxide (WO3), and titanium dioxide (TiO2) with varying weight percentages (wt.%) of the Cu2O. The resulting Cu2O/WO3/TiO2 (CWT) nanocomposites exhibited band gap energy ranging from 2.35 to 2.90 eV. Electrochemical and photoelectrochemical (PEC) studies confirmed a reduced recombination rate of photoexcited charge carriers in the CWT nanocomposites, facilitated by a direct Z-scheme heterojunction. The 0.50CWT nanocomposite demonstrated superior photodegradation activity (2.29 × 10-2 min-1) against Reactive Black 5 (RB5) dye under visible light activation. Furthermore, the 0.50CWT nanocomposite exhibited excellent stability with 80.51% RB5 photodegradation retention after five cycles. The 0.50CWT electrode achieved a maximum specific capacitance of 66.32 F/g at 10 mA/g current density, with a capacitance retention of 95.17% after 1000 charge-discharge cycles, affirming its stable and efficient supercapacitor performance. This was supported by well-defined peaks in cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) curves, indicating pseudocapacitive properties.


Assuntos
Cobre , Eletrodos , Luz , Nanocompostos , Titânio , Tungstênio , Nanocompostos/química , Titânio/química , Tungstênio/química , Cobre/química , Catálise , Óxidos/química
2.
Angew Chem Int Ed Engl ; 62(16): e202219177, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36813744

RESUMO

With a theoretical capacity of 847 mAh g-1 , Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2 O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2 @C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2 @C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g-1 at 1 A g-1 after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2 @C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).

3.
Nanotechnology ; 32(48)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34425561

RESUMO

SnO2is widely used for ethanol-sensing applications due to its excellent physicochemical properties, low toxicity and high sensitivity. However it is a challenge to construct 3D-hierarchical structures with sub 5 nm primary grain particle, which is the optimized size for ethanol sensor. Herein, genetic tri-level hierarchical SnO2microstructures are synthesised by the genetic conversion of 3D hierarchical SnS2flowers assembled by ultrathin nanosheets. The SnS2nanosheets are morphology genetic converted to porous nanosheets with sub 5 nm SnO2nanoparticles during the calcination process. When used for the detection of ethanol, the sensor exhibits a high sensitivity of 0.5 ppm (Ra/Rg = 6.8) and excellent gas-sensing response (Ra/Rg= 183 to 100 ppm) with short response/recovery time (12 s/11 s). The excellent gas sensing performance is much better than that of the previous reported SnO2-based sensors. The highly sensitivity is attributed to the large surface area derived from the recrystallization and volume changes, which offers more active sites during the morphology genetic conversion from SnS2to SnO2. Furthermore, the flower-like 3D structure enhances the stability of the materials and is beneficial for the mass diffusion dynamics of ethanol.

4.
Angew Chem Int Ed Engl ; 60(37): 20400-20406, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34219344

RESUMO

Adsorptive separation of propylene/propane (C3 H6 /C3 H8 ) mixture is desired for its potential energy saving on replacing currently deployed and energy-intensive cryogenic distillation. Realizing efficient C3 H6 /C3 H8 separation in the emerging hydrogen-bonded organic frameworks (HOFs) is very challenging owing to the lack of functional sites for preferential gas binding. By virtue of crystal engineering, we herein report a functionalized HOF (HOF-16) with free -COOH sites for the efficient separation of C3 H6 /C3 H8 mixtures. Under ambient conditions, HOF-16 shows a significant C3 H6 /C3 H8 uptake difference (by 76 %) and selectivity (5.4) in contrast to other carboxylic acid-based HOFs. Modeling studies indicate that free -COOH groups together with the suitable pore confinement facilitate the recognition and high-density packing of gas molecules. The separation performance of HOF-16 was validated by breakthrough experiments. HOF-16 is stable towards strong acidity and water.

5.
Angew Chem Int Ed Engl ; 59(11): 4396-4400, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31944515

RESUMO

The separation of C2 H2 /CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal-organic framework (M'MOF), [Fe(pyz)Ni(CN)4 ] (FeNi-M'MOF, pyz=pyrazine), with multiple functional sites and compact one-dimensional channels of about 4.0 Šfor C2 H2 /CO2 separation. This MOF shows not only a remarkable volumetric C2 H2 uptake of 133 cm3 cm-3 , but also an excellent C2 H2 /CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2 H2 -capture amount of 4.54 mol L-1 , thus outperforming most previous benchmark materials. The separation performance of this material is driven by π-π stacking and multiple intermolecular interactions between C2 H2 molecules and the binding sites of FeNi-M'MOF. This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi-M'MOF as a promising material for C2 H2 /CO2 separation.

6.
Inorg Chem ; 58(13): 8332-8338, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188582

RESUMO

A metal-organic framework (MOF) is one kind of crystalline microporous material and is increasingly used as a host of catalytically active guests. Nanostructured materials supported on MOFs have presented enhanced catalytic activity and stability. Templates or several steps are essential to the synthesis of MOF composites. Simple and effective MOF synthesis methods are still challenging. Nanosized copper oxide particles in MOF composites, described as nanosized CuO@HKUST-1, were prepared by a facile solvent-free reaction. These series of CuO@HKUST-1 composites exhibited excellent photocatalytic activity for production of hydrogen and methylene blue (MB) degradation under visible light. This synthesis method provides an effective way to fabricate MOF-related nanocomposite catalysts.

7.
Angew Chem Int Ed Engl ; 58(34): 11903-11909, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31209961

RESUMO

The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p-n junctions are constructed in 3D free-standing FeNi-LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi-LDH in the space-charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi-LDH/CoP/CC achieves ca. 10-fold and ca. 100-fold increases compared to those of FeNi-LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH- has a stronger trend to adsorb on the surface of FeNi-LDH side in the p-n junction compared to individual FeNi-LDH further verifying the synergistic effect in the p-n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.

8.
Small ; 12(38): 5281-5287, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27490256

RESUMO

Si/C yolk-shell structures have been developed to deal with the major issues associated with Si anodes: the huge volume changes and the low electrical conductivity. However, the fabrication process often involves expensive starting materials and/or simultaneously generates insulated SiC, which is harmful for Si anodes. Here, silica wastes from the optical fibers industry are used as starting materials to prepare high performance Si/C materials with Si@void@C yolk-shell structure via a rational designed Al2 O3 coating assisted magnesiothermic process. The obtained yolk-shell Si@void@C materials have a capacity of more than 1450 mA h g-1 after 100 cycles at 0.4 A g-1 . Thanks to the easily coated and removed Al2 O3 layer, the general formation of SiC can be avoided which is beneficial for improving the rate performances, and a capacity of ≈800 mA h g-1 is still kept after 200 cycles at a high rate of 10 A g-1 with a low capacity loss of 0.08% per cycle.

9.
Chemistry ; 21(10): 4085-91, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25640264

RESUMO

Two-dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High-quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as-synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge-transfer resistance at the electrolyte-electrode interface in dye-sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53% under a simulated solar illumination of 100 mW cm(-2) (AM 1.5), which is comparable with that of Pt-based devices (7.47%).

10.
Chemistry ; 21(43): 15153-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26338374

RESUMO

It is generally believed that silver or silver-based compounds are not suitable counter electrode (CE) materials for dye-sensitized solar cells (DSSCs) due to the corrosion of the I(-) /I3 (-) redox couple in electrolytes. However, Ag2 S has potential applications in DSSCs for catalyzing I3 (-) reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2 S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3 (-) to I(-) in DSSCs. The DSSC consisting of Ag2 S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2 S CE as a promising alternative to Pt CE in DSSCs.

11.
Chemistry ; 20(42): 13576-82, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25187256

RESUMO

Hydrogen produced from water under solar energy is an ideal clean energy source, and the efficiency of hydrogen production usually depends on the catalytic systems based on new compounds and/or a unique nanostructure. Herein, well-defined cube-in-cube hollow Cu9 S5 nanostructures have been successfully prepared with Cu2 O nanocubes and CS2 as precursors, and single-shell hollow Cu9 S5 nanocubes could be obtained by replacing CS2 with Na2 S. The formation mechanism of cube-in-cube hollow nanostructures has been proposed based on the Kirkendell effect and an outward self-assembly process. Further studies revealed that the cube-in-cube hollow Cu9 S5 nanostructures exhibited better photocatalytic activity toward solar H2 evolution and would be a promising photocatalyst in the solar hydrogen industry.

12.
Chempluschem ; : e202400235, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760894

RESUMO

Electrodeposition of abundant metals to fabricate efficient and durable electrodes indicate a viable role in advancing renewable electrochemical energy tools. Herein, we deposit Co9S8-Ag-Ni3S2@NF on nickel foam (NF) to produce Co9S8-Ag-Ni3S2@NF as a exceedingly proficient electrode for oxygen evolution reaction (OER). The electrochemical investigation verifies that the Co9S8-Ag-Ni3S2@NF electrode reveals better electrocatalytic activity to OER because of its nanoflowers' open-pore morphology, reduced overpotential (η10=125 mV), smaller charge transfer resistance, long-term stability, and a synergistic effect between various components, which allows the reactants to be more easily absorbed and subsequently converted into gaseous products during the water electrolysis route. Density functional theory (DFT) calculation as well reveals the introduction of Ag (222) surface into the Co9S8 (440)-Ni3S2 (120) structure increases the electronic density of states (DOS) per unit cell of a system and increases the electrocatalytic activity of OER by considerably lowering the energy barriers of its intermediates. This study provides the innovation of employing trimetallic nanomaterials immobilized on a conductive, continuous porous three-dimensional network formed on a nickel foam (NF) substrate as a highly proficient catalyst for OER.

13.
ACS Appl Mater Interfaces ; 16(19): 25090-25100, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709646

RESUMO

The selective electrocatalytic reduction of nitrobenzene (NB) to aniline demands a desirable cathodic catalyst to overcome the challenges of the competing hydrogen evolution reaction (HER), a higher overpotential, and a lower selectivity. Here, we deposit Co-doped 1T MoS2 on Ti mesh by the solvothermal method with different doping percentages of Co as x % Co-MoS2 (where x = 3, 5, 8, 10, and 12%). Because of the lowest overpotential, lower charge-transfer resistance, strong suppression of the competing HER, and higher electrochemical surface area, 8% Co-MoS2 achieves 94% selectivity of aniline with 54% faradaic efficiency. The reduction process follows first-order dynamics with a reaction coefficient of 0.5 h-1. Besides, 8% Co-MoS2 is highly stable and retains 81% selectivity even after 8 cycles. Mechanistic studies showed that the selective and exothermic adsorption of the nitro group at x % Co-MoS2 leads to a higher rate of NB reduction and higher selectivity of aniline. The aniline product is successfully removed from the solution by polymerization at FTO. This study signifies the impact of doping metal atoms in tuning the electronic arrangement of 1T-MoS2 for the facilitation of organic transformations.

14.
Phys Chem Chem Phys ; 15(11): 3939-45, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23403797

RESUMO

MnFe(2)O(4)-graphene nanocomposites (MnFe(2)O(4)-GNSs) with enhanced electrochemical performances have been successfully prepared through an ultrasonic method, e.g., approximate 1017 mA h g(-1) and 767 mA h g(-1) reversible capacities are retained even after 90 cycles at a current density of 0.1 A g(-1) and 1 A g(-1), respectively. The remarkable improvement in the reversible capacity, cyclic stability and rate capability of the obtained MnFe(2)O(4)-GNSs nanocomposites can be attributed to the good electrical conductivity and special structure of the graphene nanosheets. On the other hand, MnFe(2)O(4) also plays an important role because it transforms into a nanosized hybrid of Fe(3)O(4)-MnO with a particle size of about 20 nm during discharge-charge process, and the in situ formed hybrid of Fe(3)O(4)-MnO can be combined with GNSs to form a spongy porous structure. Furthermore, the formed hybrid can also act as the matrix of MnO or Fe(3)O(4) to prevent the aggregation of Fe(3)O(4) or MnO, and accommodate the volume change of the active materials during the discharge-charge processes, which is also beneficial to improve the electrochemical performances of the MnFe(2)O(4)-GNSs nanocomposites.

15.
Eye Contact Lens ; 39(6): 376-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24172065

RESUMO

OBJECTIVE: Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. METHODS: Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. RESULTS: MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. CONCLUSION: Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.


Assuntos
Aderência Bacteriana , Lentes de Contato/microbiologia , Polímeros , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Contagem de Colônia Microbiana , Microscopia Eletrônica de Varredura , Propriedades de Superfície
16.
Chempluschem ; 88(7): e202300191, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37283445

RESUMO

Developing a cost-saving, high-efficiency, and simple synthesis of counter electrode (CE) material to replace pricy Pt for dye-sensitized solar cells (DSSCs) has become a research hotspot. Owing to the electronic coupling effects between various components, semiconductor heterostructures can significantly enhance the catalytic performance and endurance of counter electrodes. However, the strategy to controllably synthesize the same element in several phase heterostructures used as the CE in DSSCs is still absent. Here, we fabricate well-defined CoS2 /CoS heterostructures and use them as CE catalysts in DSSCs. The as-designed CoS2 /CoS heterostructures display high catalytic performance and endurance for the triiodide reduction in DSSCs thanks to the combined and synergistic effects. As a result, a DSSC with CoS2 /CoS achieves a high energy conversion with an efficiency of 9.47 % under standard simulated solar radiation, surpassing that of pristine Pt-based CE (9.20 %). Besides, the CoS2 /CoS heterostructures possess a quick activity initiation process and extended stability, broadening their potential applications in various areas. Therefore, our proposed synthetic approach could offer new insights for synthesizing functional heterostructure materials with improved catalytic activities in DSSCs.


Assuntos
Energia Solar , Catálise , Eletrodos , Eletrônica
17.
J Int Med Res ; 50(4): 3000605221093678, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35466750

RESUMO

Acute myocarditis is often secondary to an acute virus infection, which can be the first manifestation of upper respiratory tract symptoms, followed by chest tightness, shortness of breath, palpitations, chest pain and other non-specific symptoms. In severe cases, it can quickly progress to serious complications such as heart failure, shock and respiratory failure. Laboratory examinations can show an increase of myocardial injury markers, infection and inflammatory indicators. Cardiac ultrasound can detect the weakening of the myocardial contraction and valve regurgitation. On imaging, bilateral pulmonary oedema demonstrates symmetrical infiltration along the hilum of lung, called the "butterfly shadow". This current case report describes a patient with unilateral pulmonary oedema caused by myocarditis that was initially misdiagnosed and treated as pneumonia. The patient was subsequently treated with the application of extracorporeal membrane oxygenation and he made a full recovery. A review of this case highlights that when a patient's symptoms are not typical, a comprehensive examination and evaluation are required to avoid incorrect treatment.


Assuntos
Oxigenação por Membrana Extracorpórea , Miocardite , Edema Pulmonar , Choque , Dor no Peito , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Masculino , Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/etiologia
18.
ACS Appl Mater Interfaces ; 14(22): 25478-25489, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35634976

RESUMO

The electrocatalytic reduction of nitrobenzene to aniline normally faces high overpotential and poor selectivity because of its six-electron redox nature. Herein, a Ag nanoparticles/laser-induced-graphene (LIG) heterointerface was fabricated on polyimide films and employed as an electrode material for an efficient nitrobenzene reduction reaction (NBRR) via a one-step laser direct writing technology. The first-principles calculations reveal that Ag/LIG shows the lowest activation barriers for the NBRR, which could be attributed to the optimum adsorption of the H atom realized by the appropriate interaction between Ag/LIG heterointerfaces and nitrobenzene. As a result, the overpotential of the NBRR is reduced by 217 mV after silver loading, and Ag/LIG shows a high aniline selectivity of 93%. Furthermore, an electrochemical reduction of nitrobenzene in tandem with an electrochemical oxidative polymerization of aniline was designed to serve as an alternative method to remove nitrobenzene from the aqueous solution. This strategy highlights the significance of heterointerfaces for efficient electrocatalysts, which may stimulate the development of novel electrocatalysts to boost the electrocatalytic activity.

19.
ChemSusChem ; 15(3): e202102596, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34927792

RESUMO

The gram-scale selective oxidation of biomass-based chemicals, in particular 5-hydroxymethylfurfural (HMF), into value-added 2,5-diformylfuran (DFF) has a high application potential but suffers from high cost, low selectivity, and harsh reaction conditions. Besides, the electrooxidation strategy requires the usage of expensive electrodes and struggles with low selectivity and efficiency, which restricts its further scaled-up application. In this regard, a continuous-flow system was developed through redox mediator I- /I2 for the efficient synthesis of DFF, which could accelerate the mass transfer of I- (I2 ) to aqueous (organic) phase and avoid over-oxidation to achieve high selectivity. After the solvent system, iodine concentration, and reaction time were optimized, highly efficient DFF synthesis (selectivity >99 %) could be achieved in the electrochemical flow system using inexpensive graphite felt (GF) as electrode. Moreover, selective HMF oxidation was paired with the hydrogen evolution reaction with increased efficiency after using in-situ-loaded GF-CoS2 /CoS and GF-Pt electrodes. As a result, the required energy to achieve the gram-scale synthesis of DFF was significantly reduced, demonstrating outstanding potential for large-scale production of the target product.


Assuntos
Furanos , Biomassa , Catálise , Oxirredução
20.
J Colloid Interface Sci ; 615: 707-715, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35168019

RESUMO

Solar steam generation has great potential in alleviating freshwater crises, particularly in regions with accessible seawater and abundant insolation. Inexpensive, efficient, and eco-friendly photothermal materials are desired to fabricate sunlight-driven evaporation devices. Here, we have designed an economical strategy to fabricate a high-performance wood-based solar steam generation device. In current study, 3D-hierarchical Cu3SnS4 has been loaded on wood substrates of variable sizes via an in-situ solvothermal method. Considering the water transportation capacity and thermal insulation property of wood, an enhanced light absorption was achieved by a uniform coating of Cu3SnS4 on the inside and outside of the 3D porous structure of the wood. Thanks for the synergistic effect of Cu3SnS4 and wood substrate, the obtained composite endorsed high-performance solar steam generation with a steam generation efficiency of 90% and an evaporation rate as high as 1.35 kg m-2h-1 under one sun.


Assuntos
Energia Solar , Purificação da Água , Vapor , Luz Solar , Purificação da Água/métodos , Madeira
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa