Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Res ; 199: 111348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029550

RESUMO

Traditional survey methods (TSMs) are difficult to use to perform a census of aquatic plant diversity completely in river ecosystems, and improved aquatic plant community monitoring programs are becoming increasingly crucial with a continuous decline in diversity. Although environmental DNA (eDNA) metabarcoding has been applied successfully to assess aquatic biodiversity, limited work has been reported regarding aquatic plant diversity in rivers. In this study, the efficiency of eDNA to estimate the aquatic plant diversity and spatial distribution of rivers from the Jingjinji (JJJ) region was evaluated by comparing results obtained by the TSM. Based on a combination of the two methods, 157 aquatic plant species, including 24 hydrophytes, 61 amphibious plants, and 72 mesophytes, were identified. The spatial patterns in species richness and abundance by eDNA exhibited agreement with the TSM results with a gradual decline from the mountain area (MA) to the agricultural area (AA) and then to the urban area (UA). Compared to the TSM, eDNA identified a significantly greater number of species per site (p < 0.01) and obtained a significantly higher abundance in hydrophytes (p < 0.01), supplementing the unavailable abundance data from the TSM. Furthermore, the aquatic plant assemblages from the different areas were discriminated well using eDNA (p < 0.05), but they were better discriminated by the TSM (p < 0.01). Thus, our study provides more detailed data on aquatic plant diversity in rivers from the JJJ region, which is essential for biodiversity conservation. Our findings also highlight that eDNA can be reliable for evaluating aquatic plant diversity and has the potential to respond to landscape heterogeneity in river ecosystems.


Assuntos
DNA Ambiental , Biodiversidade , China , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental , Rios , Inquéritos e Questionários
2.
Environ Pollut ; 316(Pt 1): 120648, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375579

RESUMO

As a trace element, selenium (Se) has been widely added to food to maintain the physiological homeostasis of the organism. The adverse effects of Se on the reproduction of zebrafish have been investigated, however, the effects of Se on the maturation and apoptosis of zebrafish oocytes remain unclear. In this study, zebrafish embryos (2 h post fertilization, hpf) were exposed to 0, 12.5, 25, 50, and 100 µg Se/L for 120 days. The results demonstrated that exposure to selenite decreased the gonad-somatic index (GSI) and cumulative production of eggs, inhibited oocyte maturation (OM), and increased oocyte apoptosis in females. Exposure to selenite decreased the contents of sex hormones (E2) in the serum and increased the levels of reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP) in the ovary. Furthermore, exposure to selenite downregulated the transcription level of genes on the HPG axis, decreased the phosphorylation level of CyclinB and the protein content of cAMP-dependent protein kinase (Pka), and upregulated the expression of genes (eif2s1a and chop) and proteins (Grp78, Chop) related to endoplasmic reticulum stress (ERS) and apoptosis. Moreover, maternal exposure to selenite resulted in the apoptosis of offspring and upregulated the content of ROS and the transcription level of genes related to ERS and apoptosis.


Assuntos
Selênio , Peixe-Zebra , Animais , Feminino , Peixe-Zebra/metabolismo , Larva , Ácido Selenioso/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Apoptose , Selênio/metabolismo , Oócitos
3.
Sci Total Environ ; 752: 141942, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896793

RESUMO

To evaluate the environmental impact of receiving water from the Qinghe River sewage treatment plant (STP) effluents in Beijing, we collected sediments and Bellamya aeruginosa (Up-site, Discharge-site, and Down-site) both in 2017 and 2018 and analyzed the samples via chemical analysis, biological responses and transcriptomics. In two years of data, our biological results showed that AChE activities presented different degrees of influence on B. aeruginosa captured at sampling points of the STP compared to control sites (P < 0.05). Additionally, indicators of the antioxidant system (e.g., SOD, CAT, GST, EROD activity) and MDA content were significantly increased in the whole tissue at the Up-site of the STP. Integration of the assessed biomarkers using the integrated biomarker response (IBR) index ranked the environmental impact at sites as Up-site > Discharge-site > Down-site. In terms of the transcriptome data, B. aeruginosa collected from the Discharge-site of the STP showed greater transcriptomic response than it did from all other sites. KEGG pathway analysis revealed that sewage significantly altered the expression of genes involved in xenobiotics by cytochrome P450, drug metabolism-cytochrome P450, glutathione metabolism, oxidative phosphorylation, citrate (TCA) cycle, glycolysis/gluconeogenesis, apoptotic and Parkinson's disease. The concentrations of 34 organic pollutants (17 PAHs, 10 PAEs, 7 EDCs) were measured. The chemical concentrations of pollutants decreased from Up-site to Down-site and were well correlated with enzyme activity, IBR, and transcriptomic results. Our results demonstrated that the combined use of chemical analysis, biological responses and transcriptome data is necessary to validate the efficacy of a battery of biomarkers chosen to detect environmental stress due to pollution.


Assuntos
Poluentes Químicos da Água , Água , Pequim , Monitoramento Biológico , Biomarcadores , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa