Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(4): e2205772, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424140

RESUMO

The interaction between platelets and circulating tumor cells (CTCs) contributes to distal tumor metastasis by protecting CTCs from immunological assault and shear stress, which can be disrupted by nitric oxide (NO) through inhibiting platelet-mediated adhesion. To eradicate primitive tumors and inhibit CTC-based pulmonary metastasis, a novel biomimetic nanomedicine (mCuMNO) is designed by encapsulating Cu+ -responsive S-nitrosoglutathione as a NO donor into a copper-based metal-organic framework (CuM). This work discovers that mCuMNO can target tumor regions and deplete local glutathione (GSH) to reduce Cu2+ to Cu+ , followed by triggering NO release and hydroxyl radicals (·OH) production, thereby interrupting platelet/CTC interplay and contributing to chemodynamic therapy. Detailed studies demonstrate that mCuMNO exhibits high efficiency and safety in tumor therapy and antimetastasis activity, sheding new light on the development of CuM-based tumor synthetic therapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Óxido Nítrico , Estruturas Metalorgânicas/farmacologia , Cobre , Doadores de Óxido Nítrico , Glutationa , Linhagem Celular Tumoral , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral
2.
Small ; 17(40): e2102932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34472212

RESUMO

By leveraging the ability of bacteria to express therapeutic protein cytolysin A (ClyA) through plasmid transformation, a thermally-activated biohybrid (TAB@Au) is constructed by biomineralizing gold nanoparticles (AuNPs) on the E. coli surface. Due to the feature of anaerobic bacteria homing to tumor microenvironments, the bacteria-based antitumor vehicles can be efficaciously accumulated at tumor sites. Under NIR laser irradiation, the biomineralized AuNPs harvest transdermal photons and convert them into local heat for photothermal therapy. After that, the produced heat elicits the expression of ClyA for killing tumor cells. In vitro and in vivo experiments verify the conception that the current therapeutic modality greatly inhibits the proliferation of tumor cells. In terms of the spatial specificity and non-invasiveness of NIR laser, the bacteria-based phototherapy represents an appealing way for tumor therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Linhagem Celular Tumoral , Citotoxinas , Escherichia coli , Fototerapia
3.
Glycobiology ; 30(9): 746-759, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149341

RESUMO

Tuberculosis (TB) is the leading infectious cause of mortality worldwide, especially in developing countries. However, effective means for TB diagnosis, especially for bacillus-negative (Bn) TB laboratory diagnosis, are urgently needed. In the present study, serum IgG from each tuberculosis patients and healthy controls was purified using affinity chromatography. The samples were then analyzed using mass spectrometry (MS) and ultraperformance liquid chromatography (UPLC) methods. We quantitatively assessed the changes of serum IgG galactosylation in 567 human serum samples including 377 pulmonary TB patients and 190 healthy donors (HDs). We found significantly more agalactosylated (G0) vs monogalactosylated (G1) and digalactosylated (G2) N-glycans of IgG in TB patients, including smear-negative TB patients, than in HDs. The detection rate of TB diagnostic performance by MS for IgG-Gal ratio G0/(G1 + G2 × 2) is 90.48% for bacillus-positive (Bp) and 73.16% for Bn TB patients. Further, combination of MS method with other routine laboratory TB diagnostic methods significantly increased the detection rate to 91.01%-98.39%. Similar results were observed in Mycobacterium tuberculosis (M. tb) infection mouse models. The decrease in galactosylation of IgG in TB patients was also qualitatively confirmed using specific lectin blot assay. Using the above techniques, we can discriminate the content of IgG G0 with terminal N-acetylglucosamine and IgG-Gal ratio G0/(G1 + G2 × 2) between TB patients and HDs. Our data suggest that quantitative analysis of serum-based IgG-Gal ratio G0/(G1 + G2 × 2) could be used for TB auxiliary diagnosis with high effectiveness and feasibility and its combination with other routine laboratory TB diagnostic methods could remarkably improve the detection rate.


Assuntos
Imunoglobulina G/sangue , Tuberculose/diagnóstico , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/sangue
4.
Clin Proteomics ; 17: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32968368

RESUMO

BACKGROUND: Peritoneal metastasis (PM) in gastric cancer (GC) remains an untreatable disease, and is difficult to diagnose preoperatively. Here, we aim to establish a novel prediction model. METHODS: The clinicopathologic characteristics of a cohort that included 86 non-metastatic GC patients and 43 PMGC patients from Zhongshan Hospital were retrospectively analysed to identify PM associated variables. Additionally, mass spectrometry and glycomic analysis were applied in the same cohort to find glycomic biomarkers in serum for the diagnosis of PM. A nomogram was established based on the associations between potential risk variables and PM. RESULTS: Overexpression of 4 N-glycans (H6N5L1E1: m/z 2620.93; H5N5F1E2: m/z 2650.98; H6N5E2, m/z 2666.96; H6N5L1E2, m/z 2940.08); weight loss ≥ 5 kg; tumour size ≥ 3 cm; signet ring cell or mucinous adenocarcinoma histology type; poor differentiation; diffuse or mixed Lauren classification; increased CA19-9, CA125, and CA724 levels; decreased lymphocyte count, haemoglobin, albumin, and pre-albumin levels were identified to be associated with PM. A nomogram that integrated with five independent risk factors (weight loss ≥ 5 kg, CA19-9 ≥ 37 U/mL, CA125 ≥ 35 U/mL, lymphocyte count < 2.0 * 10 ~ 9/L, and H5N5F1E2 expression ≥ 0.0017) achieved a good performance for diagnosis (AUC: 0.892, 95% CI 0.829-0.954). When 160 was set as the cut-off threshold value, the proposed nomogram represented a perfectly discriminating power for both sensitivity (0.97) and specificity (0.88). CONCLUSIONS: The nomogram achieved an individualized assessment of the risk of PM in GC patients; thus, the nomogram could be used to assist clinical decision-making before surgery.

5.
Clin Proteomics ; 17: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042279

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NACT) could improve prognosis and survival quality of patients with local advanced gastric cancer (LAGC) by providing an opportunity of radical operation for them. However, no effective method could predict the efficacy of NACT before surgery to avoid the potential toxicity, time-consuming and economic burden of ineffective chemotherapy. Some research has been investigated about the correlation between serum IgG glycosylation and gastric cancer, but the question of whether IgG glycome can reflect the tumor response to NACT is still unanswered. METHOD: Serum IgG glycome profiles were analyzed by Ultra Performance Liquid Chromatography in a cohort comprised of 49 LAGC patients of which 25 were categorized as belonging to the NACT response group and 24 patients were assigned to the non-response group. A logistic regression model was constructed to predict the response rate incorporating clinical features and differential N-glycans, while the precision of model was assessed by receiver operating characteristic (ROC) analysis. RESULTS: IgG N-glycome analysis in pretreatment serum of LAGC patients comprises 24 directly detected glycans and 17 summarized traits. Compared with IgG glycans of non-response group, agalactosylated N-glycans increased while monosialylated N-glycans and digalactosylated N-glycans decreased in the response group. We constructed a model combining patients' age, histology, chemotherapy regimen, GP4(H3N4F1), GP6(H3N5F1), and GP18(H5N4F1S1), and ROC analysis showed this model has an accurate prediction of NACT response (AUC = 0.840) with the sensitivity of 64.00% and the specificity of 100%. CONCLUSION: We here firstly present the profiling of IgG N-glycans in pretreatment serum of LAGC. The alterations in IgG N-glycome may be personalized biomarkers to predict the response to NACT in LAGC and help to illustrate the relationship between immunity and effect of NACT.

6.
Can J Physiol Pharmacol ; 96(6): 562-568, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28759731

RESUMO

Although nerve damage/toxicity has been shown to be one of the side effects in patients given prolonged antibiotic treatment, the mechanisms of the action of antibiotics on neuron cells are not clear. In this work, we investigated the toxicity of piperacillin (an antibiotic that can penetrate the blood-brain barrier) on neuron cells and its underlying mechanisms. We show that clinically relevant doses of piperacillin induce apoptosis in SH-SY5Y and human primary neuron cells through activating caspase-3 activity and decreasing Mcl-1 and Bcl-2 levels. In addition, piperacillin causes mitochondrial dysfunction in neuron cells as shown by the reduction of mitochondrial respiration, membrane potential, and ATP production. We further demonstrate that piperacillin increases accumulation of mitochondrial superoxide and reactive oxygen species, suggesting the oxidative stress in neuron cells. Consistently, oxidative damage to DNA, proteins, and membrane lipids are observed in neuron cells exposed to piperacillin. The deleterious effects of piperacillin are abolished in neuron cells by antioxidant N-acetyl-l-cysteine, further confirming that piperacillin causes neuron cell death through inducing mitochondrial dysfunction and oxidative damage. Our work demonstrates the role of piperacillin in inducing oxidative damage in neuron cells and also provides a therapeutic strategy to prevent the side effects of antibiotic treatment.


Assuntos
Antibacterianos/efeitos adversos , Morte Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piperacilina/efeitos adversos , Linhagem Celular Tumoral , Humanos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
7.
Clin Proteomics ; 14: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546799

RESUMO

BACKGROUND: Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. METHODS: The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. RESULTS: A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. CONCLUSIONS: The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal ß1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

8.
Clin Proteomics ; 13: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833472

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecological malignancy due to its frequent recurrence and drug resistance even after successful initial treatment. Accumulating scientific evidence indicates that subpopulations of cancer cells with stem cell-like properties, such as so-called side population (SP) cells, are primarily responsible for these recurrences. A better understanding of SP cells may provide new clues for detecting and targeting these cancer-initiating cells and ultimately help to eradicate cancer. Changes in glycosylation patterns are remarkable features of SP cells. Here, we isolated SP cells from ovarian cancer cell lines and analyzed their glycosylation patterns using multiple glycomic strategies. METHODS: Six high-grade serous ovarian cancer cell lines were used for SP cell isolation. Among them, HO8910 pm, which contained the highest proportion of SP cells, was used for glycomic analysis of SP cells. Cell lysate of SP cells and main population cells was applied to lectin microarray and mass spectrometry for glycan profiling. Differently expressed glycan structures were further verified by lectin blot, flow cytometry, and real-time PCR analysis of their relevant enzymes. RESULTS: Expression of core fucosylated N-glycan and tumor-associated Tn, T and sT antigens were increased in SP cells. By contrast, SP cells exhibited decreased hybrid glycan, α2,3-linked sialic glycan and multivalent sialyl-glycan. CONCLUSIONS: Glycan structures, such as Tn, T, sT antigens, and core fucosylation may serve as biomarkers of ovarian cancer stem cells.

9.
Chest ; 163(1): e31-e35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628682

RESUMO

CASE PRESENTATION: A 17-month-old male infant with history of an abnormal chest shadow in the left lung lower lobe was admitted to our hospital for the resection of the malformation. At 9 months of age, he was admitted to his local hospital because of a persistent cough. The chest CT scan in his local hospital indicated a cystic lesion in the left lung lower lobe associated with inflammation. However, no thoracic abnormalities were seen in antenatal ultrasonography, and no clinical symptoms were observed at birth. After anti-inflammatory treatments given to this infant, he achieved remission and was discharged from his local hospital.


Assuntos
Pulmão , Tomografia Computadorizada por Raios X , Recém-Nascido , Humanos , Masculino , Lactente , Feminino , Gravidez , Pulmão/diagnóstico por imagem , Tosse , Anti-Inflamatórios
10.
Transl Pediatr ; 11(2): 306-310, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35282028

RESUMO

Persistent fifth aortic arch (PFAA) is a rare congenital cardiovascular anomaly of the aortic arch, which can occur independently but is frequently associated with other cardiovascular malformations including patent ductus arteriosus (PDA), interrupted aortic arch (IAA), pulmonary atresia, tetralogy of Fallot, and transposition of the great vessels. PFAA can be classified into three different types according to different abnormal vascular connections (type A, B and C). We report an infant diagnosed with PFAA along with interrupted fourth aortic arch (type B) and PDA. Several surgical methods have been delivered to patients diagnosed with PFAA. In our case, the correction of coarctation PFAA and the ligation of PDA were performed without cardiopulmonary bypass through left lateral thoracotomy. We removed the coarctation part of the PFAA, and then performed the end-to-end anastomosis between the fifth aortic arch and the descending aorta. Despite the stenosis at the site of anastomosis was observed 10 months after the operation, the patient resulted in good recovery by once balloon dilation procedure. Thus, we recommend it is more appropriable to select this procedure in the surgical treatment of PFAA for those patients whose fourth aortic arches were interrupted with fifth aortic arches well developed. Our experience can provide a beneficial reference for future cases.

11.
Am J Transl Res ; 14(3): 1616-1627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422963

RESUMO

OBJECTIVE: To investigate the radiosensitizing effect of cyclin D-cyclin dependent kinase (CDK) 4/6 inhibitor palbociclib on esophageal squamous cell carcinoma (ESCC) and its underlying mechanisms. METHODS: The effect of palbociclib on ESCC cell radiosensitivity was detected by cell counting kit-8 (CCK-8) and clonogenic assay. γH2AX immunofluorescent staining was used to assess the repair of DNA damage induced by radiation. The expression of DNA repair proteins were examined by western blotting. Subsequently, immunoblotting and autophagy inhibitors were used to evaluate the underlying mechanisms of palbociclib triggered radiosensitization. Finally, the xenografts of ESCC were established to study the radiosensitizing effect of palbociclib in vivo. RESULTS: Palbociclib combined with irradiation significantly inhibited the cell viability of ESCC in vitro. The expression level of γH2AX showed that radiation induced DNA damage repair was inhibited by palbociclib treatment. Palbociclib also suppressed the expression of RAD51 and phosphorylated DNA-dependent protein kinase catalytic subunit (p-DNA-PKcs) after irradiation. Mechanically, palbociclib enhanced the radiosensitization of ESCC by activating autophagy via suppression of mammalian target of rapamycin (mTOR). Inhibition of autophagy using chloroquine could partially reverse the radiation enhancing effect of palbociclib. Lastly, the xenografted tumor experiment confirmed the radiosensitizing effect of palbociclib in ESCC in vivo. CONCLUSION: Our results showed that palbociclib improved the radiosensitivity of ESCC in vivo and in vitro, and thus it may be a promising radiosensitization agent for the treatment of ESCC.

12.
Adv Sci (Weinh) ; 9(15): e2105086, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411710

RESUMO

Given the special microenvironment of solid tumors, live microorganisms have emerged as drug delivery vehicles and therapeutic agents. Here, an acid-induced therapeutic platform is constructed using attenuated Escherichia coli to express the cytolysin A protein. The bacteria can target and colonize tumor tissues without causing notable host toxicity. Bacterial infection can disrupt blood vessels and trigger thrombosis in tumor tissues, resulting in the cut-off of nutrient supply to tumor cells and the arrest of tumor growth. The expression of cytolysin A induced by the acidic tumor microenvironment further strengthens thrombosis and provides a complementary therapeutic option due to its pore-forming function. In a xenograft mouse tumor model, this strategy reduces tumor proliferation by 79% and significantly prevents tumor metastasis, thus paving a new avenue for bacteria-based tumor therapy.


Assuntos
Neoplasias , Trombose , Animais , Bactérias , Citotoxinas/metabolismo , Citotoxinas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/metabolismo , Humanos , Camundongos , Neoplasias/terapia , Trombose/tratamento farmacológico , Microambiente Tumoral
13.
Front Oncol ; 11: 603417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796450

RESUMO

BACKGROUND: Neuroblastoma is the most common extracranial childhood solid tumor which accounts for 10% of the malignancies and 15% of the cancer fatalities in children. N-glycosylation is one of the most frequent post-translation protein modification playing a vital role in numerous cancers. N-glycosylation changes in neuroblastoma patient serum have not been studied in existing reports. The comprehensive analyses of serum N-glycomics in neuroblastoma can provide useful information of potential disease biomarkers and new insights of the pathophysiology in neuroblastoma. METHODS: The total serum protein N-glycosylation was analyzed in 33 neuroblastoma patients and 40 age- and sex-matched non-malignant controls. N-glycans were enzymatically released, derivatized to discriminate linkage-specific sialic acid, purified by HILIC-SPE, and identified by MALDI-TOF-MS. Peak areas were acquired by the software of MALDI-MS sample acquisition, processed and analyzed by the software of Progenesis MALDI. RESULTS: Three glyco-subclasses and six individual N-glycans were significantly changed in neuroblastoma patients compared with controls. The decreased levels of high mannose N-glycans, hybrid N-glycans, and increased levels of α2,3-sialylated N-glycans, multi-branched sialylated N-glycans were observed in neuroblastoma patients. what is more, a glycan panel combining those six individual N-glycans showed a strong discrimination performance, with an AUC value of 0.8477. CONCLUSIONS: This study provides new insights into N-glycosylation characteristics in neuroblastoma patient serum. The analyses of total serum protein N-glycosylation could discriminate neuroblastoma patients from non-malignant controls. The alterations of the N-glycomics may play a suggestive role for neuroblastoma diagnosis and advance our understanding of the pathophysiology in neuroblastoma.

14.
Am J Cancer Res ; 11(6): 3002-3020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249441

RESUMO

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with "Bionic Glycome" as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

15.
Exp Gerontol ; 141: 111098, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33010330

RESUMO

Studying the changes of serum N-glycome during mouse aging is beneficial to explore the molecular basis behind the alterations reported in human. However, such studies remainscarce and lack some information such as sialylation due to the method limitation. Here, we introduced Bionic Glycome method to quantify the serum N-glycome changes during C57BL/6 mouse aging (from the pubertal period to the old age stage). This technique enabled reliable and comprehensive quantitation of the expression level changes of more than 20 N-glycans in mouse serum at 12 time points in both genders for the first time, involving the analysis of sialic acid and its different linkages. The results demonstrated that the expression level of total glycans increased from middle age to old age. Interestingly, sex-specific N-glycome profiles and alterations were observed. Female mice showed higher level of serum fucosylation and lower level of serum afucosylation than male mice (fucosylation: p < 1.0E-6; afucosylation: p < 1.0E-6). Obviously, higher increase of serum fucosylation level was found in female mice than in male mice from middle age to old age. In addition, the opposite alterations of the afucosylated glycans with α2,3-linked sialic acid and those only with α2,6-linked sialic acid were observed at old age in male mice. These findings suggested that N-glycome could be a valuable target for investigating aging and possible contributors to aging.


Assuntos
Biônica , Polissacarídeos , Envelhecimento , Animais , Feminino , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
ACS Omega ; 5(15): 8564-8571, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337418

RESUMO

N-Linked glycosylation of the fragment crystallizable (Fc) domain of immunoglobulin G (IgG) is considered a significant modulator of antibody functions, which is known to be subclass-specific. As mice are the most widely used model organisms in immunological research, determining the variation in Fc glycosylation among each murine IgG subclass in different physiological or pathological statuses is beneficial for studying how the IgG subclass effector function is affected by Fc glycosylation. In this study, we established a method to quantify murine IgG Fc glycoforms normalized to the protein abundance at a subclass-specific level for various mouse strains using multiple reaction monitoring. The glycoform level was normalized to the subclass protein abundance (subclass-specific peptide intensity) in each IgG subclass to eliminate the contribution from the subclass protein abundance. Both good linearity and high repeatability of the method were validated by investigating a mixed mouse serum sample. The method was applied to quantify the differences in subclass-specific IgG Fc N-glycoforms between systemic sclerosis (SSc) mice and healthy control mice. The results demonstrated that each IgG subclass had its own characteristic-altered glycosylation, implying the close association of subclass-specific IgG Fc glycosylation with SSc in mice. This report demonstrates a method with great reliability and practicality that has promising potential for the relative quantitation of subclass-specific IgG Fc N-glycoforms in multiple mouse models.

17.
J Proteomics ; 223: 103752, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209427

RESUMO

Ovarian cancer is the most lethal gynecologic carcinoma; because the tumor often relapses shortly after treatment. Glycosylation plays important roles in cancer drug resistance and could be used as biomarkers to predict the drug response of patients. We used MALDI-QIT-TOF MS to analyze the serum glycomic from patients with different drug responses. Samples were collected before treatment; follow-up visit were performed after 6 months. Forty-eight drug-sensitive patients and 16 drug-resistant patients were enrolled. Compared with drug-sensitive patients, 5 glyco-subclasses and 5 single glycans were significantly altered in drug-resistant patients. Lewis type, α2,3 sialic acid and multibranch glycans were increased, α2,6 sialic acid glycans were decreased. The peak at m/z 2986.44 showed stronger prediction abilities than other single glycans, with an AUC of 0.83. A panel of three increased glycans (m/z 2401.36, H5N4F1S2, a Lewis type biantennary glycan; m/z 2986.44, H6N5S3, a triantennary trisialylated glycan; m/z 3086.39, H6N5F1S3, a Lewis type triantennary glycan) combined with CA125 achieved an AUC value of 0.88, showing a strong discrimination performance. This study provides new insights into N-glycosylation patterns in ovarian cancer patients with different drug response. These altered glycans might serve as biomarkers to reflect patients' drug sensitivity and to guide clinical treatment. SIGNIFICANCE: A large number of ovarian cancer patients experience tumor relapse shortly after initial treatment. Glycosylation plays important roles in cancer drug resistance and could be used as a biomarker to predict the drug response of patients. However, the glycosylation expressed in patients with different drug response have not been elucidated. In the present study, we used MALDI-QIT-TOF MS to analyze the serum glycomic levels of patients with different drug responses. Several glycans were changed significantly between these two groups. A panel of three increased glycans (m/z 2401.36, a Lewis type biantennary glycan, 2986.44, a triantennary trisialylated glycan, and 3086.39, a Lewis type triantennary glycan) combined with CA125 performed better descrimination of these two groups with AUC of 0.88. These altered glycans might serve as biomarkers to reflect patients' drug sensitivity and to guide clinical treatment.


Assuntos
Neoplasias Ovarianas , Feminino , Glicosilação , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Polissacarídeos , Soro , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Anal Chim Acta ; 1081: 112-119, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446948

RESUMO

Accurate, simple and economical methods for quantifying N-glycans are continuously required for discovering disease biomarkers and quality control of biopharmaceuticals. Quantitative N-glycomics based on MS using exogenous isotopic labeling internal standards is promising as it is simple and accurate. However, it is largely hampered by the lack of available glycan internal standard libraries with good coverage of the natural glycan structural heterogeneity as well as broad dynamic mass and ion abundance range. To overcome this limitation, we developed a novel method, providing 'Bionic Glycome' as internal standards for glycan quantitation by MALDI-MS. Bionic Glycome was produced using N-glycome from pooled samples to be analyzed as substrate by one step of glycan reducing and isotope labeling (Glycan-RAIL). Each bionic glycan has 3 Da mass increment over its corresponding glycan analyte based on hemiacetals/alditols and H/D mass difference. In addition, Bionic Glycome has the same glycome composition and similar glycome profile in abundance with N-glycome to be analyzed from biological sample. Through the investigation of single glycan standard and complex glycans released from model glycoprotein and serum, the results demonstrate that the method has good quantitative accuracy and high reproducibility. Lastly, this method was successfully used for discovery of lung cancer specific glycan markers by comparing the serum glycans from each sample in lung cancer group (n = 16) and healthy controls (n = 16), indicating its potential in clinical applications.


Assuntos
Biomarcadores Tumorais/análise , Biomarcadores Tumorais/normas , Polissacarídeos/análise , Polissacarídeos/normas , Idoso , Biomarcadores Tumorais/química , Boroidretos/química , Deutério , Feminino , Glicômica/métodos , Humanos , Marcação por Isótopo , Neoplasias Pulmonares/química , Masculino , Pessoa de Meia-Idade , Oxirredução , Polissacarídeos/química , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
Front Oncol ; 9: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873386

RESUMO

Background: Although Carbohydrate antigen 19-9 (CA19-9) is considered clinically useful and informative for pancreatic carcinoma (PC), false positive results, and false negative results have restricted its clinical use. Especially missed or delayed diagnosis of PC patients with negative CA19-9 value limited the utility. To improve prognosis of PC patients, the discovery of reliable biomarkers to assist CA19-9 is desired. Serum IgG galactosylation based on our previous report was altered in PC patients comparing to healthy controls. The objective of this study was to explore the diagnostic significance of IgG galactosylation in assisting CA19-9 for PC in a comprehensive way. Methods: Serum IgG galactosylation profiles were analyzed by MALDI-MS in cohort 1 (n = 252) and cohort 2 in which all CA19-9 levels were negative (n = 133). In each cohort, not only healthy controls and PC patients but also benign pancreatic disease (BPD) patients were enrolled. Peaks were acquired by the software of MALDI-MS sample acquisition, followed by being processed and analyzed by the software of Progenesis MALDI. IgG Gal-ratio, which was calculated from the relative intensity of peaks G0, G1, and G2 according to the formula (G0/(G1+G2×2)), was employed as an index for indicating the distribution of IgG galactosylation. Results: The Gal-ratio was elevated in PC comparing with that in non-cancer group (healthy controls and BPD). The area under the receiver operating characteristic curve (AUC) of IgG Gal-ratio was higher than that of CA19-9 (0.912 vs. 0.814). The performance was further improved when Gal-ratio and CA19-9 were combined (AUC: 0.928). Meanwhile, Gal-ratio also had great diagnostic value with a sensitivity of 92.31% (AUC: 0.883) in detection of PC at early stage. Notably, IgG Gal-ratio has great sensitivity (90.63%) and specificity (76.81%) in CA19-9-negative PC patients. Conclusions: IgG Gal-ratio had a great performance in detection of PC and could be used to assist CA19-9 in improving diagnosis performance through early stage detection, differentiation from BPD, and PC diagnosis with CA19-9-negative level.

20.
Medicine (Baltimore) ; 98(26): e16208, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31261570

RESUMO

The composition of glycan in immunoglobulin G (IgG) has shown to affect various diseases and can be regulated by drugs and preventive vaccination. A hepatitis B surface antigen (HBsAg)-hepatitis B immunoglobulin (HBIG) immune complex (YIC) therapeutic vaccine for chronic hepatitis B (CHB) patients has undergone clinical trials. To explore for markers of CHB, which could be associated with responsiveness to YIC therapeutic vaccine, serum IgG glycosylation in CHB patients was analyzed.Kinetic changes of serum galactosylated IgG in 53 hepatitis Be antigen (HBeAg)-positive CHB patients treated with YIC were monitored by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) analysis. Whole blood cytokines were assayed by cytokine binding assay kits. All samples were back assayed before treatment, during therapy and follow-up for 6 months from a previous completed clinical trial.During YIC treatment, 26 patients with lower IgG galactosylation level at baseline [galactosylation level (Gal-ratio) = -0.29, 0.18 (mean, SD)] showed sustained increase of serum galactosylated IgG, and responded to YIC treatment by HBeAg seroconversion. While those who did not respond to YIC treatment [Gal-ratio = -0.40, 0.15 (mean, SD)] failed to show similar changes. Furthermore, this kinetic increase of galactosylated IgG correlated with marked up-regulated IL-2 level, confirming that effective cellular immune responses have participated in responsiveness.For HBeAg-positive CHB patients lower serum IgG galactosylation level may serve as an indicator for selecting a suitable subpopulation of candidates for YIC therapeutic vaccination.


Assuntos
Vacinas contra Hepatite B/uso terapêutico , Antígenos E da Hepatite B/sangue , Hepatite B Crônica/imunologia , Hepatite B Crônica/terapia , Imunoglobulina G/sangue , Adulto , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Seguimentos , Galactose/metabolismo , Hepatite B Crônica/sangue , Humanos , Interleucina-2/sangue , Masculino , Soroconversão , Resultado do Tratamento , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa