Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38604960

RESUMO

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Assuntos
Doenças Transmitidas por Alimentos , Quinolonas , Humanos , Kentucky , Filogenia , Salmonella , Antibacterianos/farmacologia , Plasmídeos/genética , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética
2.
Sci Total Environ ; 949: 175235, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102947

RESUMO

Wastewater-based epidemiology (WBE) has emerged as a promising tool for monitoring the spread of COVID-19, as SARS-CoV-2 can be shed in the faeces of infected individuals, even in the absence of symptoms. This study aimed to optimize a prediction model for estimating COVID-19 infection rates based on SARS-CoV-2 RNA concentrations in wastewater, and reveal the infection trends and variant diversification in Shenzhen, China following the lifting of a strict COVID-19 strategy. Faecal samples (n = 4337) from 1204 SARS-CoV-2 infected individuals hospitalized in a designated hospital were analysed to obtain Omicron variant-specific faecal shedding dynamics. Wastewater samples from 6 wastewater treatment plants (WWTPs) and 9 pump stations, covering 3.55 million people, were monitored for SARS-CoV-2 RNA concentrations and variant abundance. We found that the viral load in wastewater increased rapidly in December 2022 in the two districts, demonstrating a sharp peak in COVID-19 infections in late-December 2022, mainly caused by Omicron subvariants BA.5.2.48 and BF.7.14. The prediction model, based on the mass balance between total viral load in wastewater and individual faecal viral shedding, revealed a surge in the cumulative infection rate from <0.1 % to over 70 % within three weeks after the strict COVID-19 strategy was lifted. Additionally, 39 cryptic SARS-CoV-2 variants were identified in wastewater, in addition to those detected through clinical surveillance. These findings demonstrate the effectiveness of WBE in providing comprehensive and efficient assessments of COVID-19 infection rates and identifying cryptic variants, highlighting its potential for monitoring emerging pathogens with faecal shedding.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , COVID-19/epidemiologia , China/epidemiologia , Águas Residuárias/virologia , Humanos , Fezes/virologia , Betacoronavirus , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral/análise , Eliminação de Partículas Virais , Carga Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa