Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Pediatr ; 23(1): 174, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060094

RESUMO

BACKGROUND: Several previous studies have identified a potential role that the gut microbiome can play in autism spectrum disorder (ASD) in children, but little is known about how variations in the virome may be involved in ASD. We aimed to understand the changes in the gut DNA virome of children with ASD. METHODS: A case-control study was presented, in which 13 two-children families were observed while considering the age, mode of birth, history of antibiotic use, and vaccination history to minimize the influence of confounding factors. DNA viral metagenomic sequencing was successfully performed on stool samples from 11 children with ASD and 12 healthy non-ASD children. The basic composition and gene function of the participants' fecal DNA virome were detected and analyzed. Finally, the abundance and diversity of the DNA virome of children with ASD and their healthy siblings were compared. RESULTS: The gut DNA virome in children aged 3-11 years was found to be dominated by the Siphoviridae family of Caudovirales. The proteins encoded by the DNA genes mainly carry out the functions of genetic information transmission and metabolism. Compared the gut DNA virome of ASD and healthy non-ASD children, their abundance of Caudovirales and Petitvirales both showed a significant negative correlation (r = -0.902, P < 0.01), there was no statistically significant difference in the relative abundance of viruses at the order and family levels, and a difference in the relative abundance at the genus level for Skunavirus (Ζ = -2.157, P = 0.031). Viral α diversity was reduced in children with ASD, but α diversity and ß diversity did not differ statistically between groups. CONCLUSIONS: This study indicates that elevated Skunavirus abundance and decreased α diversity in the gut DNA virulence group of children with ASD, but no statistically significant difference in the change in alpha and beta diversity. This provides preliminary cumulative information on virological aspects of the relationship between the microbiome and ASD, and should benefit future multi-omics and large sample studies on the gut microbes in children with ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Viroma , DNA
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(12): 1356-1364, 2022 Dec 15.
Artigo em Zh | MEDLINE | ID: mdl-36544419

RESUMO

OBJECTIVES: To study the structure and diversity of gut microbiota in children with autism spectrum disorder (ASD), and to predict the metabolic function of gut microbiota. METHODS: Fecal samples were collected from 30 ASD children (ASD group) and 20 typically developing (TD) children (TD group). Genomic DNA was extracted, the 16S rDNA V4 region was amplified by PCR, and Illumina NovaSeq6000 platform was used for high-throughput sequencing. The composition and distribution characteristics of gut microbiota were analyzed for the two groups, and the metabolic function of gut microbiota was predicted. RESULTS: There were no significant differences in alpha diversity indices (Chao1, Shannon, and Simpson) of gut microbiota between the ASD and TD groups (P>0.05). At the phylum and class levels, there was no significant difference in the structure of gut microbiota between the two groups (P>0.05). Compared with the TD group, the ASD group had significantly higher abundance of Megamonas, Barnesiella, Dialister, Megasphaera, Ruminococcus_torques_group, and Fusobacterium at the genus level (P<0.05). Functional prediction analysis showed that compared with the TD group, the ASD group had a significantly lower abundance of the gut microbiota with the metabolic functions such as tryptophan degradation, glutamate degradation, and butyrate production (P<0.05) and a significantly higher abundance of the gut microbiota with the metabolic function of GABA degradation (P<0.05). CONCLUSIONS: There is no significant difference in the alpha diversity of gut microbiota between ASD children and TD children, while there are differences in the composition of species at the genus level and the metabolic functions of gut microbiota.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Criança , Bactérias/genética , Fezes , Butiratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa