Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(10): 1948-1957, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416723

RESUMO

Accurate classification of molecular chemical motifs from experimental measurement is an important problem in molecular physics, chemistry, and biology. In this work, we present neural network ensemble classifiers for predicting the presence (or lack thereof) of 41 different chemical motifs on small molecules from simulated C, N, and O K-edge X-ray absorption near-edge structure (XANES) spectra. Our classifiers not only achieve class-balanced accuracies of more than 0.95 but also accurately quantify uncertainty. We also show that including multiple XANES modalities improves predictions notably on average, demonstrating a "multimodal advantage" over any single modality. In addition to structure refinement, our approach can be generalized to broad applications with molecular design pipelines.

2.
Nanotechnology ; 34(12)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538812

RESUMO

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

3.
Nucleic Acids Res ; 49(5): e26, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33330921

RESUMO

Upstream open reading frame (uORF) translation disrupts scanning 43S flux on mRNA and modulates main open reading frame (mORF) translation efficiency. Current tools, however, have limited access to ribosome dynamics in both upstream and main ORFs of an mRNA. Here, we develop a new two-color in vitro fluorescence assay, Smart-ORF, that monitors individual uORF and mORF translation events in real-time with single-molecule resolution. We demonstrate the utility of Smart-ORF by applying it to uORF-encoded arginine attenuator peptide (AAP)-mediated translational regulation. The method enabled quantification of uORF and mORF initiation efficiencies, 80S dwell time, polysome formation, and the correlation between uORF and mORF translation dynamics. Smart-ORF revealed that AAP-mediated 80S stalling in the uORF stimulates the uORF initiation efficiency and promotes clustering of slower uORF-translating ribosomes. This technology provides a new tool that can reveal previously uncharacterized dynamics of uORF-containing mRNA translation.


Assuntos
Fases de Leitura Aberta , Biossíntese de Proteínas , Ribossomos/metabolismo , Imagem Individual de Molécula/métodos , Arginina/metabolismo , Sistema Livre de Células , Regulação da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo
4.
J Chem Phys ; 157(16): 164801, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319405

RESUMO

Kinetics of a reaction network that follows mass-action rate laws can be described with a system of ordinary differential equations (ODEs) with polynomial right-hand side. However, it is challenging to derive such kinetic differential equations from transient kinetic data without knowing the reaction network, especially when the data are incomplete due to experimental limitations. We introduce a program, PolyODENet, toward this goal. Based on the machine-learning method Neural ODE, PolyODENet defines a generative model and predicts concentrations at arbitrary time. As such, it is possible to include unmeasurable intermediate species in the kinetic equations. Importantly, we have implemented various measures to apply physical constraints and chemical knowledge in the training to regularize the solution space. Using simple catalytic reaction models, we demonstrate that PolyODENet can predict reaction profiles of unknown species and doing so even reveal hidden parts of reaction mechanisms.


Assuntos
Algoritmos , Cinética
5.
Nucleic Acids Res ; 48(1): e6, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722415

RESUMO

Eukaryotic mRNAs are predominantly translated via the cap-dependent pathway. Initiation is a rate-limiting step in cap-dependent translation and is the main target of translational control mechanisms. There is a lack of high-resolution techniques for characterizing the cap-dependent initiation kinetics. Here, we report an in vitro single-molecule assay that allows characterization of both initiation and peptide chain elongation kinetics for cap-dependent translation. Surprisingly, the histogram of the first-round initiation time is highly asymmetrical and spans a large time range that is several-fold greater than the average peptide synthesis time in translation reactions with a firefly luciferase-encoding mRNA. Both the histogram and single-molecule trajectories reveal an unexpected high-degree of asynchrony in translation activity between mRNA molecules. Furthermore, by inserting a small stem-loop (ΔG = -4.8 kcal/mol) in the middle of the mRNA 5' untranslated region (UTR), our assay robustly detects small changes in budding yeast initiation kinetics, which could not be resolved by bulk luminescence kinetics. Lastly, we demonstrate the general applicability of this assay to distinct cell-free translation systems by using extracts prepared from budding yeast, wheat germ, and rabbit reticulocyte lysates. This assay should facilitate mechanistic studies of eukaryotic cap-dependent translation initiation and translational control.


Assuntos
Bioensaio , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/genética , Ribossomos/genética , Imagem Individual de Molécula/métodos , Animais , Carbocianinas/química , Carbocianinas/metabolismo , Misturas Complexas/química , Misturas Complexas/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Capuzes de RNA/metabolismo , Coelhos , Reticulócitos/química , Reticulócitos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Triticum/química , Triticum/metabolismo
6.
J Cell Biochem ; 121(10): 4120-4129, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31961005

RESUMO

Infection of human papillomaviruses (HPVs), such as subtypes HPV16 and HPV18 is carcinogenic to human and is prominent cause of HPV-positive cervical carcinoma (CC). A closer investigation into the mechanism of HPV-induced CC may stimulate the generation of an improved therapy treating cervical cancer. Our study herein interrogated the function of a small nucleolar RNA host gene 8 (SNHG8) in HPV-induced CC. As a result, a notable increase of SNHG8 in HPV-induced CC cells was found compared with HPV-negative CC cells. Functionally, it identified that SNHG8 aggravated the cell proliferation and migration in Cell Counting Kit-8 and transwell assays. Besides, flow cytometry apoptosis assay displayed that blockade of SNHG8 exacerbated apoptosis of HPV-positive CC cells. As detected by fluorescence in situ hybridization analysis and subcellular fractionation assay, SNHG8 was primarily expressed in the nucleus and exerted suppressive role on reversion inducing cysteine-rich protein with kazal motifs (RECK) expression, which implied a potential transcriptional regulation of SNHG8 on RECK level. Mechanically, SNHG8 was disclosed to interact with enhancer of zeste homolog 2 (EZH2) based on RNA immunoprecipitation assay. ChIP assay further unveiled the occupancy of EZH2 in the promoter region of RECK. An additional chromatin immunoprecipitation assay highlighted that SNHG8 intensified the enrichment of EZH2 and H3K27me3 in RECK promoter region. Altogether, it reflected that SNHG8 recruited EZH2 to downregulate RECK expression, leading to HPV-induced CC aggravation.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas Ligadas por GPI/genética , Inativação Gênica , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Infecções por Papillomavirus/complicações , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Carcinogênese/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Infecções por Papillomavirus/virologia , RNA Longo não Codificante/genética , Transfecção , Neoplasias do Colo do Útero/genética
8.
Nature ; 475(7354): 118-21, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734708

RESUMO

The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.


Assuntos
Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/metabolismo , Pareamento de Bases , Sequência de Bases , Códon/genética , Sequência Rica em GC/genética , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Pinças Ópticas , Elongação Traducional da Cadeia Peptídica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Termodinâmica
9.
Nano Lett ; 16(1): 549-54, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26691496

RESUMO

During the discharge of a lithium-sulfur (Li-S) battery, an electronically insulating 2D layer of Li2S is electrodeposited onto the current collector. Once the current collector is enveloped, the overpotential of the cell increases, and its discharge is arrested, often before reaching the full capacity of the active material. Guided by a new computational platform known as the Electrolyte Genome, we advance and apply benzo[ghi]peryleneimide (BPI) as a redox mediator for the reduction of dissolved polysulfides to Li2S. With BPI present, we show that it is now possible to electrodeposit Li2S as porous, 3D deposits onto carbon current collectors during cell discharge. As a result, sulfur utilization improved 220% due to a 6-fold increase in Li2S formation. To understand the growth mechanism, electrodeposition of Li2S was carried out under both galvanostatic and potentiostatic control. The observed kinetics under potentiostatic control were modeled using modified Avrami phase transformation kinetics, which showed that BPI slows the impingement of insulating Li2S islands on carbon. Conceptually, the pairing of conductive carbons with BPI can be viewed as a vascular approach to the design of current collectors for energy storage devices: here, conductive carbon "arteries" dominate long-range electron transport, while BPI "capillaries" mediate short-range transport and electron transfer between the storage materials and the carbon electrode.

10.
RNA Biol ; 13(7): 613-21, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27211284

RESUMO

RNA with site-specific modification is a useful tool for RNA biology studies. However, generating kilobase (kb) -long RNA with internal modification at a site distant from RNA termini remains challenging. Here we report an enhanced splint ligation technique, proximal disruptor aided ligation (ProDAL), which allows adequate efficiency toward this purpose. The key to our approach is using multiple DNA oligonucleotides, 'proximal disruptors', to target the RNA substrate sequence next to the ligation site. The binding of disruptors helps to free the ligation site from intramolecular RNA basepairing, and consequently promotes more efficient formation of the pre-ligation complex and a higher overall ligation yield. We used naturally occurring 1.0 kb renilla and 1.9 kb firefly luciferase mRNA sequences to test the efficacy of our approach. ProDAL yielded 9-14% efficiency for the ligation between two RNA substrates, both of which were between 414 and 1313 nucleotides (nt) long. ProDAL also allowed similarly high efficiency for generating kb-long RNA with site-specific internal modification by a simple three-part ligation between two long RNA substrates and a modification-carrying RNA oligonucleotide. In comparison, classical splint ligation yielded a significantly lower efficiency of 0-2% in all cases. We expect that ProDAL will benefit studies involving kb-long RNAs, including translation, long non-coding RNAs, RNA splicing and modification, and large ribonucleoprotein complexes.


Assuntos
RNA/química , RNA/síntese química
11.
J Am Chem Soc ; 137(9): 3411-20, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25668289

RESUMO

In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg(2+) → Mg(+)), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI(-) exhibits a significant bond weakening while paired with the transient, partially reduced Mg(+). In contrast, BH4(-) and BF4(-) are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

13.
Proc Natl Acad Sci U S A ; 109(36): 14458-63, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908248

RESUMO

The sequence and secondary structure of the 5'-end of mRNAs regulate translation by controlling ribosome initiation on the mRNA. Ribosomal protein S1 is crucial for ribosome initiation on many natural mRNAs, particularly for those with structured 5'-ends, or with no or weak Shine-Dalgarno sequences. Besides a critical role in translation, S1 has been implicated in several other cellular processes, such as transcription recycling, and the rescuing of stalled ribosomes by tmRNA. The mechanisms of S1 functions are still elusive but have been widely considered to be linked to the affinity of S1 for single-stranded RNA and its corresponding destabilization of mRNA secondary structures. Here, using optical tweezers techniques, we demonstrate that S1 promotes RNA unwinding by binding to the single-stranded RNA formed transiently during the thermal breathing of the RNA base pairs and that S1 dissociation results in RNA rezipping. We measured the dependence of the RNA unwinding and rezipping rates on S1 concentration, and the force applied to the ends of the RNA. We found that each S1 binds 10 nucleotides of RNA in a multistep fashion implying that S1 can facilitate ribosome initiation on structured mRNA by first binding to the single strand next to an RNA duplex structure ("stand-by site") before subsequent binding leads to RNA unwinding. Unwinding by multiple small substeps is much less rate limited by thermal breathing than unwinding in a single step. Thus, a multistep scheme greatly expedites S1 unwinding of an RNA structure compared to a single-step mode.


Assuntos
Modelos Biológicos , Conformação de Ácido Nucleico , Biossíntese de Proteínas/fisiologia , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Escherichia coli , Pinças Ópticas , Reação em Cadeia da Polimerase , Biossíntese de Proteínas/genética , RNA de Cadeia Dupla/química , RNA Mensageiro/química , Proteínas Ribossômicas/química
14.
Phys Chem Chem Phys ; 16(40): 21941-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25208768

RESUMO

By analysing X-ray pair distribution function data using a multivariate statistical approach, we isolate the cation solvation structure for monovalent (Li(+)/Na(+)/K(+)) and multivalent (Mg(2+)/Ca(2+)/Zn(2+)) electrolytes based on TFSI salts in diglyme. Parallel molecular dynamics simulations provide enhanced structural details. The data suggest that contact ion-pairs are a common feature in multivalent electrolytes.

15.
ACS Nano ; 18(1): 1126-1136, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147003

RESUMO

Recent advances in superconducting qubit technology have led to significant progress in quantum computing, but the challenge of achieving a long coherence time remains. Despite the excellent lifetime performance that tantalum (Ta) based qubits have demonstrated to date, the majority of superconducting qubit systems, including Ta-based qubits, are generally believed to have uncontrolled surface oxidation as the primary source of the two-level system loss in two-dimensional transmon qubits. Therefore, atomic-scale insight into the surface oxidation process is needed to make progress toward a practical quantum processor. In this study, the surface oxidation mechanism of native Ta films and its potential impact on the lifetime of superconducting qubits were investigated using advanced scanning transmission electron microscopy (STEM) techniques combined with density functional theory calculations. The results suggest an atomistic model of the oxidized Ta(110) surface, showing that oxygen atoms tend to penetrate the Ta surface and accumulate between the two outermost Ta atomic planes; oxygen accumulation at the level exceeding a 1:1 O/Ta ratio drives disordering and, eventually, the formation of an amorphous Ta2O5 phase. In addition, we discuss how the formation of a noninsulating ordered TaO1-δ (δ < 0.1) suboxide layer could further contribute to the losses of superconducting qubits. Subsurface oxidation leads to charge redistribution and electric polarization, potentially causing quasiparticle loss and decreased current-carrying capacity, thus affecting superconducting qubit coherence. The findings enhance the comprehension of the realistic factors that might influence the performance of superconducting qubits, thus providing valuable guidance for the development of future quantum computing hardware.

16.
Adv Mater ; 36(21): e2312027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252915

RESUMO

Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.

17.
Front Bioeng Biotechnol ; 11: 1168136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214295

RESUMO

Introduction: Uterine adhesion (IUA) is a severe complication that results from uterine operations or uterine infections. Hysteroscopy is considered the gold standard for the diagnosis and treatment of uterine adhesions. Yet, this invasive procedure leads to re-adhesions after hysteroscopic treatment. Hydrogels loading functional additives (e.g., placental mesenchymal stem cells (PC-MSCs)) that can act as physical barriers and promote endometrium regeneration are a good solution. However, traditional hydrogels lack tissue adhesion which makes them unstable under a rapid turnover of the uterus, and PC-MSCs have biosafety risks when used as functional additives. Methods: In this study, we coupled an adhesive hydrogel with a PC-MSCs conditioned medium (CM) to form a hybrid of gel and functional additives (CM/Gel-MA). Results and Discussion: Our experiments show that CM/Gel-MA enhances the activity of endometrial stromal cells (ESCs), promotes cell proliferation, and reduces the expression of α-SMA, collagen I, CTGF, E-cadherin, and IL-6, which helps to reduce the inflammatory response and inhibit fibrosis. We conclude that CM/Gel-MA can more potentially prevent IUA by combining the physical barriers from adhesive hydrogel and functional promotion from CM.

18.
Eur Phys J E Soft Matter ; 35(4): 9704, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22526978

RESUMO

By introducing an additional hydrogen bond to hydrogen bond interaction in the force field of the CSAW (Conditioned Self-Avoiding Walk) model, we investigate into the mechanism of antiparallel ß-sheet formation based on the folding of a short polyalanine in gas phase. Through our numerical simulation, we detect the possible presence of a transient helix during ß-sheet formation, whose presence is shown to have slowed the formation of ß-sheets by an order of magnitude. While we observe the mechanisms of nucleation, zipping and induction that drives the formation of a ß-sheet, we uncover a new mechanism that involves transient ß-turns and short ß-sheets during the formation of long ß-sheets. Our results have enabled us to provide an overview on the mechanisms of ß-sheet formation via two main folding pathways: slow folding through the intermediate state of transient helix, and fast folding from the nucleation of ß-turn.


Assuntos
Modelos Químicos , Peptídeos/química , Estrutura Secundária de Proteína , Simulação por Computador , Transferência de Energia , Gases/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína
19.
Proc Natl Acad Sci U S A ; 105(18): 6602-7, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18448679

RESUMO

The evolution of RNA conformation with Mg(2+) concentration ([Mg(2+)]) is typically determined from equilibrium titration measurements or nonequilibrium single [Mg(2+)]-jump measurements. We study the folding of single RNA molecules in response to a series of periodic [Mg(2+)] jumps. The 260-residue catalytic domain of RNase P RNA from Bacillus stearothermophilus is immobilized in a microfluidic flow chamber, and the RNA conformational changes are probed by fluorescence resonance energy transfer (FRET). The kinetics of population redistribution after a [Mg(2+)] jump and the observed connectivity of FRET states reveal details of the folding pathway that complement and transcend information from equilibrium or single-jump measurements. FRET trajectories for jumps from [Mg(2+)] = 0.01 to 0.1 mM exhibit two-state behavior whereas jumps from 0.01 mM to 0.4 mM exhibit two-state unfolding but multistate folding behavior. RNA molecules in the low and high FRET states before the [Mg(2+)] increase are observed to undergo dynamics in two distinct regions of the free energy landscape separated by a high barrier. We describe the RNA structural changes involved in crossing this barrier as a "hidden" degree of freedom because the changes do not alter the detected FRET value but do alter the observed dynamics. The associated memory prevents the populations from achieving their equilibrium values at the end of the 5- to 10-sec [Mg(2+)] interval, thereby creating a nonequilibrium steady-state condition. The capability of interrogating nonequilibrium steady-state RNA conformations and the adjustable period of [Mg(2+)]-jump cycles makes it possible to probe regions of the free energy landscape that are infrequently sampled in equilibrium or single-jump measurements.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Geobacillus stearothermophilus/genética , Cinética , Magnésio/química , Termodinâmica
20.
J Vis Exp ; (163)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33016943

RESUMO

Cap-dependent protein synthesis is the predominant translation pathway in eukaryotic cells. While various biochemical and genetic approaches have allowed extensive studies of cap-dependent translation and its regulation, high resolution kinetic characterization of this translation pathway is still lacking. Recently, we developed an in vitro assay to measure cap-dependent translation kinetics with single-molecule resolution. The assay is based on fluorescently labeled antibody binding to nascent epitope-tagged polypeptide. By imaging the binding and dissociation of antibodies to and from nascent peptide-ribosome-mRNA complexes, the translation progression on individual mRNAs can be tracked. Here, we present a protocol for establishing this assay, including mRNA and PEGylated slide preparations, real-time imaging of translation, and analysis of single molecule trajectories. This assay enables tracking of individual cap-dependent translation events and resolves key translation kinetics, such as initiation and elongation rates. The assay can be widely applied to distinct translation systems and should broadly benefit in vitro studies of cap-dependent translation kinetics and translational control mechanisms.


Assuntos
Células Eucarióticas/metabolismo , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Imagem Individual de Molécula/métodos , Humanos , Cinética , Capuzes de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa