Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 142(22): 9982-9992, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32352771

RESUMO

The efficient and stereoselective synthesis of polysubstituted butadienes, especially the multifunctional butadienes, represents a great challenge in organic synthesis. Herein, we wish to report a distinctive Pd(0) carbene-initiated decarboxylative olefination approach that enables the direct coupling of diazo esters with vinylethylene carbonates (VECs), vinyl oxazolidinones, or vinyl benzoxazinones to afford alcohol-, amine-, or aniline-containing 1,3-dienes in moderate to high yields and with excellent stereoselectivity. This protocol features operational simplicity, mild reaction conditions, a broad substrate scope, and gram-scalability. Notably, a structurally unique allylic Pd(II) intermediate was isolated and characterized. DFT calculation and control experiments demonstrated that a rare Pd(0) carbene intermediate could be involved in this reaction. Moreover, the polysubstituted butadienes as novel building blocks were unprecedentedly assembled into macrocycles, which efficiently inhibited the P-glycoprotein and dramatically reversed multidrug resistance in cancer cells by 190-fold.


Assuntos
Butadienos/síntese química , Compostos Macrocíclicos/síntese química , Paládio/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Butadienos/química , Butadienos/farmacologia , Catálise , Sobrevivência Celular/efeitos dos fármacos , Descarboxilação , Teoria da Densidade Funcional , Humanos , Células KB , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Estrutura Molecular , Estereoisomerismo
2.
Br J Cancer ; 123(6): 1000-1011, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572172

RESUMO

BACKGROUND: Trastuzumab-emtansine (T-DM1), one of the most potent HER2-targeted drugs, shows impressive efficacy in patients with HER2-positive breast cancers. However, resistance inevitably occurs and becomes a critical clinical problem. METHODS: We modelled the development of acquired resistance by exposing HER2-positive cells to escalating concentrations of T-DM1. Signalling pathways activation was detected by western blotting, gene expression was analysed by qRT-PCR and gene copy numbers were determined by qPCR. The role of Yes on resistance was confirmed by siRNA-mediated knockdown and stable transfection-mediated overexpression. The in vivo effects were tested in xenograft model. RESULTS: We found that Yes is overexpressed in T-DM1-resistant cells owing to amplification of chromosome region 18p11.32, where the YES1 gene resides. Yes activated multiple proliferation-related signalling pathways, including EGFR, PI3K and MAPK, and led to cross-resistance to all types of HER2-targeted drugs, including antibody-drug conjugate, antibody and small molecule inhibitor. The outcome of this cross-resistance may be a clinically incurable condition. Importantly, we found that inhibiting Yes with dasatinib sensitised resistant cells in vitro and in vivo. CONCLUSIONS: Our study revealed that YES1 amplification conferred resistance to HER2-targeted drugs and suggested the potential application of the strategy of combining HER2 and Yes inhibition in the clinic.


Assuntos
Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Amplificação de Genes , Proteínas Proto-Oncogênicas c-yes/genética , Receptor ErbB-2/análise , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Neoplasias da Mama/química , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-yes/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Quinases da Família src/fisiologia
3.
Cancer Sci ; 110(10): 3306-3314, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31361380

RESUMO

Isocitrate dehydrogenase 2 (IDH2), an important mitochondrial metabolic enzyme involved in the tricarboxylic acid cycle, is mutated in a variety of cancers. AG-221, an inhibitor primarily targeting the IDH2-R140Q mutant, has shown remarkable clinical benefits in the treatment of relapsed or refractory acute myeloid leukemia patients. However, AG-221 has weak inhibitory activity toward IDH2-R172K, a mutant form of IDH2 with more severe clinical manifestations. Herein, we report TQ05310 as the first mutant IDH2 inhibitor that potently targets both IDH2-R140Q and IDH2-R172K mutants. TQ05310 inhibited mutant IDH2 enzymatic activity, suppressed (R)-2-hydroxyglutarate (2-HG) production and induced differentiation in cells expressing IDH2-R140Q and IDH2-R172K, but not in cells expressing wild-type IDH1/2 or mutant IDH1. TQ05310 bound to both IDH2-R140Q and IDH2-R172K, with Q316 being the critical residue mediating the binding of TQ05310 with IDH2-R140Q, but not with IDH2-R172K. TQ05310 also had favorable pharmacokinetic characteristics and profoundly inhibited 2-HG production in a tumor xenografts model. The results of the current study establish a solid foundation for further clinical investigation of TQ05310, and provide new insight into the development of novel mutant IDH2 inhibitors.


Assuntos
Substituição de Aminoácidos , Inibidores Enzimáticos/administração & dosagem , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias/tratamento farmacológico , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Sci ; 110(11): 3584-3594, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31446643

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as the first-line treatment of non-small cell lung cancers (NSCLC) harboring EGFR-activating mutations, but acquired resistance is ubiquitous and needs to be solved urgently. Here, we introduce an effective approach for overcoming resistance to the EGFR-TKI, AZD9291, in NSCLC cells using SHR-A1403, a novel c-mesenchymal-epithelial transition factor (c-Met)-targeting antibody-drug conjugate (ADC) consisting of an anti-c-Met monoclonal antibody (c-Met mAb) conjugated to a microtubule inhibitor. Resistant cells were established by exposing HCC827 to increasing concentrations of EGFR-TKI. c-Met was found to be overexpressed in most resistant cells. AZD9291 resistance was partially restored by combination of AZD9291 and crizotinib only in resistant cells overexpressing phospho-c-Met, which synergistically inhibited c-Met-mediated phosphorylation of the downstream targets ERK1/2 and AKT. In resistant cells overexpressing c-Met, neither crizotinib nor c-Met mAb was able to overcome AZD9291 resistance. In contrast, SHR-A1403 strongly inhibited proliferation of AZD9291-resistant HCC827 overexpressing c-Met, regardless of the levels of c-Met phosphorylation. SHR-A1403 bound to resistant cells overexpressing c-Met was internalized into cells and released associated microtubule inhibitor, resulting in cell-killing activity that was dependent on c-Met expression levels only, irrespective of the involvement of c-Met or EGFR signaling in AZD9291 resistance. Consistent with its activity in vitro, SHR-A1403 significantly inhibited the growth of AZD9291-resistant HCC827 tumors and caused tumor regression in vivo. Thus, our findings show that SHR-A1403 efficiently overcomes AZD9291 resistance in cells overexpressing c-Met, and further indicate that c-Met expression level is a biomarker predictive of SHR-A1403 efficacy.


Assuntos
Anticorpos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Anticorpos/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Imunoconjugados/farmacocinética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória
5.
Acta Pharmacol Sin ; 40(7): 971-979, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30643210

RESUMO

Emerging evidence demonstrates that a c-Met antibody-drug conjugate (ADC) has superior efficacy and safety profiles compared with those of currently available small molecules or antibody inhibitors for the treatment of c-Met-overexpressing cancers. Here we described both the in vitro and in vivo efficacies of SHR-A1403, a novel c-Met ADC composed of a humanized IgG2 monoclonal antibody against c-Met conjugated to a novel cytotoxic microtubule inhibitor. SHR-A1403 showed high affinity to c-Met proteins derived from human or monkey and potent inhibitory effects in cancer cell lines with high c-Met protein expression. In mice bearing tumors derived from cancer cell lines or patient HCC tissues with confirmed c-Met overexpression, SHR-A1403 showed excellent anti-tumor efficacy. Antibody binding with c-Met contributed to SHR-A1403 endocytosis; the subsequent translocation to lysosomes and cytotoxicity of the released toxin are speculated to be predominant mechanisms underlying the anti-tumor activity of SHR-A1403. In conclusion, SHR-A1403 showed significant anti-tumor activity in cancer cell lines, xenograft mouse models and an HCC PDX model, which all have high c-Met levels. These data provide references for SHR-A1403 as a potential therapy for the treatment of cancers with c-Met overexpression.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Moduladores de Tubulina/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/toxicidade , Antineoplásicos/imunologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Imunoconjugados/imunologia , Imunoconjugados/toxicidade , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Microtúbulos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/imunologia , Moduladores de Tubulina/imunologia , Moduladores de Tubulina/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Acta Pharmacol Sin ; 40(2): 268-278, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29777202

RESUMO

BRAF and MEK inhibitors have shown remarkable clinical efficacy in BRAF-mutant melanoma; however, most patients develop resistance, which limits the clinical benefit of these agents. In this study, we found that the human melanoma cell clones, A375-DR and A375-TR, with acquired resistance to BRAF inhibitor dabrafenib and MEK inhibitor trametinib, were cross resistant to other MAPK pathway inhibitors. In these resistant cells, phosphorylation of ribosomal protein S6 (rpS6) but not phosphorylation of ERK or p90 ribosomal S6 kinase (RSK) were unable to be inhibited by MAPK pathway inhibitors. Notably, knockdown of rpS6 in these cells effectively downregulated G1 phase-related proteins, including RB, cyclin D1, and CDK6, induced cell cycle arrest, and inhibited proliferation, suggesting that aberrant modulation of rpS6 phosphorylation contributed to the acquired resistance. Interestingly, RSK inhibitor had little effect on rpS6 phosphorylation and cell proliferation in resistant cells, whereas P70S6K inhibitor showed stronger inhibitory effects on rpS6 phosphorylation and cell proliferation in resistant cells than in parental cells. Thus regulation of rpS6 phosphorylation, which is predominantly mediated by BRAF/MEK/ERK/RSK signaling in parental cells, was switched to mTOR/P70S6K signaling in resistant cells. Furthermore, mTOR inhibitors alone overcame acquired resistance and rescued the sensitivity of the resistant cells when combined with BRAF/MEK inhibitors. Taken together, our findings indicate that RSK-independent phosphorylation of rpS6 confers resistance to MAPK pathway inhibitors in BRAF-mutant melanoma, and that mTOR inhibitor-based regimens may provide alternative strategies to overcome this acquired resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Oximas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia
7.
Cancer Sci ; 109(4): 1207-1219, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446853

RESUMO

Abrogating tumor angiogenesis by inhibiting vascular endothelial growth factor receptor-2 (VEGFR2) has been established as a therapeutic strategy for treating cancer. However, because of their low selectivity, most small molecule inhibitors of VEGFR2 tyrosine kinase show unexpected adverse effects and limited anticancer efficacy. In the present study, we detailed the pharmacological properties of anlotinib, a highly potent and selective VEGFR2 inhibitor, in preclinical models. Anlotinib occupied the ATP-binding pocket of VEGFR2 tyrosine kinase and showed high selectivity and inhibitory potency (IC50 <1 nmol/L) for VEGFR2 relative to other tyrosine kinases. Concordant with this activity, anlotinib inhibited VEGF-induced signaling and cell proliferation in HUVEC with picomolar IC50 values. However, micromolar concentrations of anlotinib were required to inhibit tumor cell proliferation directly in vitro. Anlotinib significantly inhibited HUVEC migration and tube formation; it also inhibited microvessel growth from explants of rat aorta in vitro and decreased vascular density in tumor tissue in vivo. Compared with the well-known tyrosine kinase inhibitor sunitinib, once-daily oral dose of anlotinib showed broader and stronger in vivo antitumor efficacy and, in some models, caused tumor regression in nude mice. Collectively, these results indicate that anlotinib is a well-tolerated, orally active VEGFR2 inhibitor that targets angiogenesis in tumor growth, and support ongoing clinical evaluation of anlotinib for a variety of malignancies.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Cancer Sci ; 109(10): 3305-3315, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30076657

RESUMO

Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate that has been approved for the treatment of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. Despite the remarkable efficacy of T-DM1 in many patients, resistance to this therapeutic has emerged as a significant clinical problem. In the current study, we used BT-474/KR cells, a T-DM1-resistant cell line established from HER2-positive BT-474 breast cancer cells, as a model to investigate mechanisms of T-DM1 resistance and explore effective therapeutic regimens. We show here for the first time that activation of signal transducer and activator of transcription 3 (STAT3) mediated by leukemia inhibitory factor receptor (LIFR) overexpression confers resistance to T-DM1. Moreover, secreted factors induced by activated STAT3 in resistant cells limit the responsiveness of cells that were originally sensitive to T-DM1. Importantly, STAT3 inhibition sensitizes resistant cells to T-DM1, both in vitro and in vivo, suggesting that the combination T-DM1 with STAT3-targeted therapy is a potential treatment for T-DM1-refractory patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Maitansina/análogos & derivados , Fator de Transcrição STAT3/metabolismo , Trastuzumab/farmacologia , Ado-Trastuzumab Emtansina , Animais , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT3/genética , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Sci ; 108(7): 1458-1468, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28388007

RESUMO

Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) consisting of human epidermal growth factor receptor 2 (HER2)-targeted mAb trastuzumab linked to antimicrotubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. Acquired resistance has been a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much less in N87-KR cells than in N87 cells. Furthermore, lysosome acidification, achieved by vacuolar H+ -ATPase (V-ATPase), was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase selective inhibitor bafilomycin A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-monomethyl auristatin E, were capable of efficiently overcoming this resistance. Our results show for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADCs containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Maitansina/análogos & derivados , Neoplasias Gástricas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Maitansina/metabolismo , Maitansina/farmacologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Receptor ErbB-2/biossíntese , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochem Biophys Res Commun ; 489(1): 14-20, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28536078

RESUMO

BRAF, one of the key factors in mitogen-activated protein kinase (MAPK) signaling pathway, plays an important role in cell functions including growth and proliferation. Inhibition of BRAF represents a promising antitumor strategy. Dabrafenib, a type I inhibitor of BRAF interrupting RAF/MEK interaction, has been approved by FDA as a single agent or combined with MEK inhibitor trametinib for the treatment of patients with BRAF V600E mutation-positive advanced melanoma. In the present study, we investigated the feasibility of combined treatment with dabrafenib and sorafenib, type I and type II BRAF inhibitor respectively, on colorectal cancer cells with BRAF V600E mutation. Unexpectedly, sorafenib significantly antagonized the inhibition effect of dabrafenib on the proliferation of colorectal cancer HT-29 and Colo205 cells. The antagonism relied on co-existence of wild-type and mutant (V600E) BRAF, for no antagonism was observed in tumor cells expressing homozygous wild-type or mutant (V600E) BRAF. BRAF, but not CRAF, was required for this antagonism. Moreover, we found that sorafenib reversed dabrafenib inhibition of AKT in HT-29 cells, and phosphatidylinositol-3-kinase (PI3K) inhibitor GDC0941 significantly restored this antagonistic effect when combined with dabrafenib and sorafenib, indicating that AKT is critically involved in this antagonism. Collectively, we found that significant antagonism was observed when dabrafenib was combined with sorafenib in colorectal cancer cells harboring heterozygous genotype of BRAF and AKT is critically involved in this antagonism. We suggest that BRAF inhibitor dabrafenib and sorafenib should not be combined in clinic.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Imidazóis/antagonistas & inibidores , Niacinamida/análogos & derivados , Oximas/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Imidazóis/farmacologia , Mutação , Niacinamida/química , Niacinamida/farmacologia , Oximas/química , Oximas/farmacologia , Compostos de Fenilureia/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Cancer Sci ; 107(6): 782-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27002306

RESUMO

Heat shock protein 90 (Hsp90) stabilizes a variety of proteins required for cancer cell survival and has been identified as a promising drug target for cancer treatment. To date, several Hsp90 inhibitors have entered into clinical trials, but none has been approved for cancer therapy yet. Thus, exploring new Hsp90 inhibitors with novel mechanisms of action is urgent. In the present study, we show that Y-632, a novel pyrimidine derivative, inhibited Hsp90 in a different way from the conventional Hsp90 inhibitor geldanamycin. Y-632 induced degradation of diverse Hsp90 client proteins through the ubiquitin-proteasome pathway, as geldanamycin did; however, it neither directly bound to Hsp90 nor inhibited Hsp90 ATPase activity. Y-632 inhibited Hsp90 function mainly through inducing intracellular thiol oxidation, which led to disruption of the Hsp90-Hsp70/Hsp90 organizing protein complex and further induced cell adhesion inhibition, G0 /G1 cell cycle arrest, and apoptosis. Moreover, Y-632 efficiently overcame imatinib resistance mediated by Bcr-Abl point mutations both in vitro and in vivo. We believe that Y-632, acting as a novel small-molecule inhibitor of the Hsp90-Hsp70/Hsp90 organizing protein complex, has great potential to be a promising Hsp90 inhibitor for cancer therapy, such as for imatinib-resistant leukemia.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Pirimidinas/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteínas de Fusão bcr-abl/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Mesilato de Imatinib/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Proteínas Mutantes/genética , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Sci ; 105(1): 117-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24205792

RESUMO

Activating mutations in KIT have been associated with gastrointestinal stromal tumors (GISTs). The tyrosine kinase inhibitor imatinib mesylate has revolutionized the treatment of GISTs. Unfortunately, primary or acquired resistance to imatinib does occur in GISTs and forms a major problem. Although sunitinib malate, a multi-kinase inhibitor, has shown effectiveness against imatinib-resistant GISTs, recent studies have indicated that some imatinib-resistant GISTs harboring secondary mutations in the KIT activation loop were also resistant to sunitinib. Therefore, new drugs capable of overcoming the dual drug resistance of GISTs probably have potential clinical utility. In this study, we investigated the efficacy of flumatinib, an inhibitor of BCR-ABL/PDGFR/KIT, against 32D cells transformed by various KIT mutants and evaluated its potency to overcome the drug resistance of certain mutants. Interestingly, our in vitro study revealed that flumatinib effectively overcame the drug resistance of certain KIT mutants with activation loop mutations (i.e., D820G, N822K, Y823D, and A829P). Our in vivo study consistently suggested that flumatinib had superior efficacy compared with imatinib or sunitinib against 32D cells with the secondary mutation Y823D. Molecular modeling of flumatinib docked to the KIT kinase domain suggested a special mechanism underlying the capability of flumatinib to overcome the drug-resistance conferred by activation loop mutations. These findings suggest that flumatinib could be a promising therapeutic agent against GISTs resistant to both imatinib and sunitinib because of secondary mutations in the activation loop.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Benzamidas/efeitos adversos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Mesilato de Imatinib , Indóis/efeitos adversos , Indóis/farmacologia , Interleucina-3/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Piperazinas/efeitos adversos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Pirróis/efeitos adversos , Pirróis/farmacologia , Distribuição Aleatória , Sunitinibe
13.
J Pharmacol Exp Ther ; 341(3): 709-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22414857

RESUMO

5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent vascular disrupting agent, selectively destroys established tumor vasculature, causing a rapid collapse in blood flow that ultimately leads to inhibition of tumor growth. Here, we demonstrate that p38 MAPK is critically involved in DMXAA-induced cytoskeleton reorganization in endothelial cells and tumor necrosis factor-α (TNF-α) production in macrophages, both of which were essential for DMXAA-induced vascular disruption. Inhibition of p38 mitogen-activated protein kinase (MAPK) significantly attenuated DMXAA-induced actin cytoskeleton reorganization in human umbilical vein endothelial cells and TNF-α production in macrophages. In vivo, p38 MAPK inhibition attenuated the immediate reduction in tumor blood flow induced by DMXAA treatment (<30 min) by inhibiting actin cytoskeleton reorganization in tumor vascular endothelial cells and blunted the long-lasting (>4 h) DMXAA-induced shutdown of the tumor vasculature by inhibiting intratumoral TNF-α production. These results indicate that p38 MAPK plays a critical role in DMXAA-induced endothelial cell cytoskeleton reorganization and TNF-α production, thus regulating DMXAA-induced antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Xantonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Injeções Intraperitoneais , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/enzimologia , Interferência de RNA , Fator de Necrose Tumoral alfa/metabolismo
14.
Am J Cancer Res ; 12(2): 549-561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261786

RESUMO

The anti-HER2 monoclonal antibody trastuzumab is the mainstay of treatment for HER2-positive breast and gastric cancer, and its combination with multiple chemotherapeutic agents has represented an effective and rational strategy in the clinic. In this study, we report that trastuzumab in combination with PEGylated interferon-α1b (IFN-α1b), a polyethylene glycol (PEG)-conjugated form of a subtype of interferon alpha (IFN-α), synergistically inhibited the proliferation of HER2-positive cells, including BT-474 and SK-BR-3 breast cancer cells and NCI-N87 gastric cancer cells, and also induced their apoptosis, but had no effect on HER2-negative MDA-MB-231 breast cancer cells. Trastuzumab inhibited phosphorylation of HER2, AKT and ERK, an effect that was enhanced by PEGylated IFN-α1b, likely owing to PEGylated IFN-α1b-mediated downregulation of HER2 through the lysosomal degradation pathway. Moreover, PEGylated IFN-α1b significantly enhanced trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC) in HER2-positive cells. Importantly, trastuzumab combined with PEGylated IFN-α1b exhibited significant synergistic antitumor activity in HER2-positive BT-474 xenografts, an effect that was associated with enhanced inhibition of HER2 expression and AKT and ERK phosphorylation. Strikingly, depletion of natural killer cells with anti-Asialo GM1 antibody abrogated the synergistic antitumor activity, indicating that augmented ADCC is essential for this synergy. Taken together, our findings indicate that both enhanced inhibition of HER2 downstream signaling and augmented ADCC contribute to the synergistic antitumor activity of trastuzumab with PEGylated IFN-α1b, and imply that combining trastuzumab with PEGylated IFN-α1b could be a promising strategy for HER2-positive cancers.

15.
Cancer Sci ; 102(7): 1374-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21443688

RESUMO

Angiogenesis is an important process in cell development, especially in cancer. Vascular endothelial growth factor (VEGF) signaling is an important regulator of angiogenesis. Several therapies that act against VEGF signal transduction have been developed, including YN968D1, which is a potent inhibitor of the VEGF signaling pathway. This study investigated the antitumor activity of YN968D1 (apatinib mesylate) in vitro and in vivo. YN968D1 potently suppressed the kinase activities of VEGFR-2, c-kit and c-src, and inhibited cellular phosphorylation of VEGFR-2, c-kit and PDGFRß. YN968D1 effectively inhibited proliferation, migration and tube formation of human umbilical vein endothelial cells induced by FBS, and blocked the budding of rat aortic ring. In vivo, YN968D1 alone and in combination with chemotherapeutic agents effectively inhibited the growth of several established human tumor xenograft models with little toxicity. A phase I study of YN968D1 has shown encouraging antitumor activity and a manageable toxicity profile. These findings suggest that YN968D1 has promise as an antitumor drug and might have clinical benefits.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Ratos , Ratos Sprague-Dawley
16.
Thorac Cancer ; 12(8): 1210-1218, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656275

RESUMO

BACKGROUND: As a highly heterogeneous disease, lung cancer has a multitude of cellular components and patterns of gene expression which are not dependent on a single mutation or signaling pathway. Thus, using combined drugs to treat lung cancer may be a practical strategy. METHODS: The combined antitumor effects of HS-10296, a third-generation EGFR inhibitor targeting EGFR T790M mutation, with the multitargeted tyrosine kinase inhibitor (TKI) famitinib in non-small cell lung cancer (NSCLC) were evaluated by in vitro methods such as cell proliferation, apoptosis, angiogenesis assays, and in vivo animal efficacy studies. RESULTS: Famitinib strengthened the effects of HS-10296 on inhibiting proliferation and inducing apoptosis of NSCLC cells, possibly by synergistic inhibition of AKT and ERK phosphorylation. Meanwhile, HS-10296 significantly potentiated the effects of famitinib on inhibiting the proliferation and migration of HUVEC, which may be through synergistic inhibition of ERK phosphorylation in HUVEC, suggesting that HS-10296 may improve the inhibition of angiogenesis by famitinib. Moreover, combination of HS-10296 and famitinib exerted synergistic antitumor activity in NCI-H1975 and PC-9 xenograft models, and this effect may be accomplished by synergistic inhibition of phosphorylation of AKT and ERK and tumor angiogenesis in tumor tissues. CONCLUSIONS: Collectively, our results indicate that HS-10296 and famitinib exhibit significant synergistic antitumor activity, suggesting that the third-generation EGFR inhibitor combined with VEGFR inhibitor provides a promising strategy in the treatment of EGFR-mutant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/uso terapêutico , Receptores Proteína Tirosina Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Humanos , Indóis/farmacologia , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/farmacologia , Transdução de Sinais
17.
Nat Commun ; 11(1): 2151, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358512

RESUMO

One of the key challenges to overcome multidrug resistance (MDR) in cancer is the development of more effective and general strategies to discover bioactive scaffolds. Inspired by natural products, we describe a strategy to achieve this goal by modular biomimetic synthesis of scaffolds of (Z)-allylic-supported macrolides. Herein, an Rh(III)-catalyzed native carboxylic acid-directed and solvent-free C-H activation allylation with high stereoselectivity and chemoselectivity is achieved. The generated poly-substituted allylic alcohol as a multifunctional and biomimetic building block is crucial for the synthesis of (Z)-allylic-supported macrolides. Moreover, the unique allylic-supported macrolides significantly potentiate the sensitivity of tumor cells to cytotoxic agents such as vinorelbine and doxetaxel by reversing p170-glycoprotein-mediated MDR. Our findings will inspire the evolution of synthetic chemistry and open avenues for expedient and diversified synthesis of bioactive macrocyclic molecules.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Biomimética/métodos , Macrolídeos/química , Catálise , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Vinorelbina/química
18.
J Pharmacol Exp Ther ; 330(1): 326-33, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19377096

RESUMO

Combretastatin A4 (CA4) is a novel vascular-disrupting agent that has shown promising anticancer effects through its inhibition of microtubule assembly and subsequent disruption of tumor blood flow. In this report, we demonstrate that 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126), a selective inhibitor of mitogen-activated protein kinase kinase (MEK), significantly enhances the cytotoxicity of CA4 in BEL-7402 cells, independently of MEK inhibition. This independence is evidenced by the fact that another, more specific MEK inhibitor, PD0325901 [N-[(R)-2,3-dihydroxy-propoxy]-3,4-difluoro-2-[2-fluoro-4-iodo-phenylamino]-benzamide], does not have the same effect as U0126. The disassembled microtubules are able to reassemble in the later stages of CA4 treatment, because of the inactivating glucuronidation of CA4. U0126, but not PD0325901, inhibits CA4 glucuronidation, thereby blocking microtubule reassembly and enhancing CA4-induced G(2)/M cell-cycle arrest. Consistent with this, U0126 significantly enhances CA4-induced cytotoxicity for cells in which CA4 glucuronidation occurs, but not for cells in which such glucuronidation does not occur. These results suggest that great caution should be exercised when interpreting data obtained using U0126 or when CA4 is combined with inhibitors of glucuronidation in clinical practice. It is most important to note that these findings indicate that the combination of CA4 with inhibitors of glucuronidation may be a novel and rational strategy for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Butadienos/administração & dosagem , Citotoxinas/toxicidade , Inibidores do Crescimento/toxicidade , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Nitrilas/administração & dosagem , Estilbenos/toxicidade , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Sinergismo Farmacológico , Inibidores do Crescimento/farmacologia , Células HCT116 , Humanos , Células KB , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Estilbenos/farmacologia
19.
J Nat Prod ; 72(6): 1170-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19499938

RESUMO

A series of 3-demethoxycarbonyl-3-amide methyl anhydrovinblastine derivatives (5b-24b) was designed, synthesized, and evaluated for their proliferation inhibition activities against two tumor cell lines (A549 and HeLa). Most of the amide anhydrovinblastine derivatives exhibited potent cytotoxicity, with the size of the introduced substituents being the foremost factor in determining the resultant cytotoxic activity. Test results in vivo against sarcoma 180 of three potent compounds (6b, 12b, and 24b) indicated that the introduction of an amide group at the 22-position of anhydrovinblastine (1e) improved both potency and toxicity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Vimblastina/análogos & derivados , Antineoplásicos/química , Técnicas de Química Combinatória , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Vimblastina/síntese química , Vimblastina/química , Vimblastina/farmacologia , Vinorelbina
20.
Int J Cancer ; 122(8): 1730-7, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18074350

RESUMO

Combretastatin A4 (CA4) is a novel vascular disrupting agent that has promising clinical efficacy because of its ability to inhibit microtubule assembly and subsequently disrupt tumor blood flow. In this study, we demonstrate that mitogen-activated protein kinases (MAPKs) are critically involved in the cytotoxicity of CA4. CA4 stimulates both extracellular signal-regulated kinases (ERK1/2) and p38 MAPK in the BEL-7402 hepatocellular carcinoma cell line in a time- and dose-dependent manner. This stimulation is a result of CA4-induced microtubule disassembly, which is a reversible process. Reversibility of microtubule disassembly is evidenced by the ability of disassembled microtubules to reassemble just a few hours after CA4 treatment. p38 MAPK, but not ERK1/2, contributes to this microtubule reassembly following CA4 exposure, and only inhibition of p38 MAPK, but not ERK1/2, synergistically enhances CA4-induced G(2)/M cell cycle arrest. Consistent with this, p38 MAPK inhibitors such as SB203580 and SB202190 also synergistically enhance the cytotoxicity of CA4 in cells where p38 MAPK is activated by CA4. This enhancement appears to be specific for CA4 because the cytotoxicity of other microtubule-targeted agents such as paclitaxel, vinorelbine and colchicine was not affected by p38 MAPK inhibitors. These data indicate that p38 MAPK is a potential anticancer target and that the combination of CA4 with p38 MAPK inhibitors may be a novel and promising strategy for cancer therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Estilbenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Imunofluorescência , Humanos , Imidazóis/farmacologia , Masculino , Microtúbulos/efeitos dos fármacos , Piridinas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa