Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1256465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404688

RESUMO

The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.

2.
Sci Adv ; 8(37): eabh3260, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112675

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease resulting in motor coordination deficits and cerebellar pathology. Expression of brain-derived neurotrophic factor (BDNF) is reduced in postmortem tissue from SCA6 patients. Here, we show that levels of cerebellar BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are reduced at an early disease stage in a mouse model of SCA6 (SCA684Q/84Q). One month of exercise elevated cerebellar BDNF expression and improved ataxia and cerebellar Purkinje cell firing rate deficits. A TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), likewise improved motor coordination and Purkinje cell firing rate and elevated downstream Akt signaling. Prolonged 7,8-DHF administration persistently improved ataxia when treatment commenced near disease onset but was ineffective when treatment was started late. These data suggest that 7,8-DHF, which is orally bioavailable and crosses the blood-brain barrier, is a promising therapeutic for SCA6 and argue for the importance of early intervention for SCA6.

3.
Cell Rep ; 37(5): 109940, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731636

RESUMO

Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.


Assuntos
Axônios/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Órgão Vomeronasal/metabolismo , Animais , Evolução Molecular , Células HEK293 , Humanos , Imunoglobulinas/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Odorantes , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Odorantes/genética , Transdução de Sinais , Relação Estrutura-Atividade
4.
Curr Biol ; 29(17): 2867-2879.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31422888

RESUMO

Foraging strategies should be tuned to the expected distribution of resources in the environment. Tuning can occur over generations and lead to genetic differences in innate foraging behavior or over shorter timescales within an individual's lifespan. Both genetically encoded and experience-based strategies are implemented by neural circuits that respond to environmental cues and track internal states. Caenorhabditis elegans exhibit both between-strain genetic differences and within-strain plasticity in foraging. In individuals, changes in foraging are usually short term and based on recent experience. Here, we tested whether developmental experience could permanently alter foraging. We found that, in most wild strains, early-life starvation led to "cautious" foraging strategies, in which exploration is reduced, and these behavioral changes are associated with altered dynamics in a locomotory circuit. Possessing either the derived (domestication-associated) or ancestral allele of the neuroglobin glb-5 determines foraging plasticity. Overall, we show that C. elegans exhibit adaptive developmental plasticity that affects multiple aspects of foraging behavior and leads to changes in a core navigation circuit and that innate foraging traits and plasticity in those traits are genetically separable. VIDEO ABSTRACT.


Assuntos
Caenorhabditis elegans/fisiologia , Fenótipo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Comportamento Alimentar , Privação de Alimentos , Globinas/genética
5.
Front Cell Neurosci ; 10: 248, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853421

RESUMO

Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells - known as torpedoes - have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wild-type and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11). This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occurred largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6), and found elevated disease-related torpedo number at 2 years. However, we found normal levels of developmental torpedoes in these mice. Our findings suggest that the transient emergence of Purkinje cell axonal torpedoes during the second postnatal week in mice represents a normal morphological feature in the developing cerebellar microcircuit.

6.
eNeuro ; 2(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26730403

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA6(84Q) mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA6(84Q) mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA6(84Q) mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6.


Assuntos
Canais de Cálcio/metabolismo , Atividade Motora/genética , Neurônios/metabolismo , Células de Purkinje/citologia , Ataxias Espinocerebelares/genética , Animais , Comportamento Animal/fisiologia , Canais de Cálcio/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Transgênicos , Ataxias Espinocerebelares/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa