Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(7): 075001, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943539

RESUMO

Plasma-based laser amplification is considered as a possible way to overcome the technological limits of present day laser systems and achieve exawatt laser pulses. Efficient amplification of a picosecond laser pulse by stimulated Brillouin scattering (SBS) of a pump pulse in a plasma requires to reach the self-similar regime of the strongly coupled (SC) SBS. In this Letter, we report on the first observation of the signatures of the transition from linear to self-similar regimes of SC-SBS, so far only predicted by theory and simulations. With a new fully head-on collision geometry, subpicosecond pulses are amplified by a factor of 5 with energy transfers of few tens of mJ. We observe pulse shortening, frequency spectrum broadening, and down-shifting for increasing gain, signatures of SC-SBS amplification entering the self-similar regime. This is also confirmed by the power law dependence of the gain on the amplification length: doubling the interaction length increases the gain by a factor 1.4. Pump backward Raman scattering (BRS) on SC-SBS amplification has been measured for the first time, showing a strong decrease of the BRS amplitude and frequency bandwidth when SBS seed amplification occurs.

2.
Phys Rev Lett ; 106(22): 225003, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702607

RESUMO

By using a thick (250 µm) target with 350 µm radius of curvature, the intense proton beam driven by a petawatt laser is focused at a distance of ∼1 mm from the target for all detectable energies up to ∼25 MeV. The thickness of the foil facilitates beam focusing as it suppresses the dynamic evolution of the beam divergence caused by peaked electron flux distribution at the target rear side. In addition, reduction in inherent beam divergence due to the target thickness relaxes the curvature requirement for short-range focusing. Energy resolved mapping of the proton beam trajectories from mesh radiographs infers the focusing and the data agree with a simple geometrical modeling based on ballistic beam propagation.

3.
Phys Rev Lett ; 106(18): 185004, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635098

RESUMO

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.

4.
Phys Rev Lett ; 105(13): 135001, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230778

RESUMO

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 µm), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.

5.
Phys Rev Lett ; 105(19): 195008, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21231179

RESUMO

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.

6.
Rev Sci Instrum ; 80(11): 113506, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947730

RESUMO

The experimental arrangement for the investigation of high-field laser-induced processes using a broadband proton probe beam has been modified to enable the detection of the ultrafast motion of field fronts. It is typical in such experiments for the target to be oriented perpendicularly with respect to the principal axis of the probe beam. It is demonstrated here, however, that the temporal imaging properties of the diagnostic arrangement are altered drastically by placing the axis (or plane) of the target at an oblique angle to the transverse plane of the probe beam. In particular, the detection of the motion of a laser-driven field front along a wire at a velocity of (0.95+/-0.05)c is described.

7.
Phys Rev Lett ; 102(19): 194801, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518962

RESUMO

The interaction of a 3x10;{19} W/cm;{2} laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude approximately 10;{4} A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa