Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803246

RESUMO

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linfócitos T CD8-Positivos/patologia , Ecossistema , Humanos , RNA-Seq
2.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317040

RESUMO

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Aterosclerose/terapia , Colesterol/metabolismo , Inflamação/terapia , Lipoproteínas HDL/uso terapêutico , Macrófagos/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipoproteínas HDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Biologia de Sistemas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Br J Dermatol ; 190(5): 657-667, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38133541

RESUMO

BACKGROUND: Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are potentially life-threatening autoimmune blistering diseases. Treatment is based on long-term immunosuppression with high doses of glucocorticosteroids in combination with potentially corticosteroid-sparing agents and/or rituximab. Immunoadsorption (IA) has emerged as a fast-acting adjuvant treatment option. OBJECTIVES: To assess the clinical efficacy of IA in addition to best medical treatment (BMT). METHODS: We conducted a multicentre (26 centres from Germany and Austria) randomized controlled trial in 72 patients with newly diagnosed, relapsed or chronic active PV or PF (34 female patients and 38 male patients, aged 42-72 years) comparing BMT (prednisolone 1.0 mg kg-1 per day plus azathioprine or mycophenolate) with adjuvant IA (BMT + IA). Central 1 : 1 randomization was done at the coordinating centre for clinical trials (KKS Marburg). The primary endpoint was analysed using Kaplan-Meier and Cox regression methods. RESULTS: The study was ended prematurely owing to safety concerns after random allocation of 72 patients to BMT + IA (n = 34) or BMT (n = 38). The primary endpoint, time to complete remission on therapy, was not significantly different for the two groups [hazard ratio (HR) 1.35, 95% confidence interval (CI) 0.68-2.69; P = 0.39]. The cumulative dose of prednisolone was significantly lower in the BMT + IA group compared with BMT alone (difference -1214, 95% CI -2225 to -70; P = 0.03). In a post hoc analysis, patients with more extensive PV/PF showed a tendency towards a shorter time to remission in the BMT + IA group compared with the BMT group (HR 1.87, P = 0.17 in patients with baseline Pemphigus Disease Area Index ≥ 15). While more adverse events were observed in patients in the BMT group (29 vs. 25), severe adverse events were more frequent in patients in the BMT + IA group (17 events in 10 patients vs. 11 events in 8 patients). CONCLUSIONS: In this study, adjuvant IA did not demonstrate a shorter time to clinical remission, but a corticosteroid-sparing effect was observed. In patients with extensive PV/PF, post hoc analysis suggests that adjuvant IA may lead to earlier remission, but potential adverse events must be carefully weighed against the expected benefits.


Pemphigus vulgaris and pemphigus foliaceus are potentially life-threatening autoantibody-driven blistering diseases, which present with erosions or blisters on skin and/or mucous membranes. Treatment is based on long-term immunosuppressive agents. Immunoadsorption (IA) is a procedure that removes autoantibodies from the blood and has emerged as a fast-acting treatment option for pemphigus.We conducted a trial comparing best medical treatment (BMT) (prednisolone 1.0 mg kg per day plus azathioprine or mycophenolate) with best medical treatment plus IA (BMT + IA). A total of 26 centres from Germany and Austria recruited 72 patients with active pemphigus (34 women and 38 men, aged 42­72 years) who were randomly allocated in a ratio of 1 : 1 to the treatment groups.Following inclusion of 72 patients in the BMT + IA (n = 34) or BMT (n = 38) groups, the study ended prematurely owing to safety concerns. The main outcome, time to complete remission (relief of all symptoms) while still receiving therapy, was not significantly different for the two groups. In contrast, the cumulative dose of prednisolone was significantly lower in the BMT + IA compared with BMT alone. In an additional analysis, patients with more extensive pemphigus showed a tendency towards a shorter time to remission in the BMT + IA group compared with the BMT group. While more adverse events were observed in the BMT group (29 vs. 25), severe adverse events were more frequent in the BMT + IA group (17 vs. 11). In this study, IA did not show a shorter time to clinical remission, but a prednisolone-sparing effect was observed. In patients with extensive pemphigus, adjuvant IA may possibly lead to earlier remission, but potential adverse events must be carefully weighed against the expected benefits.


Assuntos
Pênfigo , Humanos , Masculino , Feminino , Imunossupressores/uso terapêutico , Prednisolona/uso terapêutico , Rituximab/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Corticosteroides/uso terapêutico
4.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926164

RESUMO

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Assuntos
COVID-19 , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Líquido da Lavagem Broncoalveolar/química , Tensoativos , Autoanticorpos , Imunoglobulina A
5.
Mol Cancer ; 22(1): 207, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102680

RESUMO

Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.


Assuntos
Interferon gama , Neoplasias , Humanos , Animais , Camundongos , Interferon gama/farmacologia , Interferon gama/metabolismo , Antígeno B7-H1 , Linhagem Celular Tumoral , Imunoterapia , Microambiente Tumoral , Neoplasias/genética
6.
Immunity ; 41(5): 762-75, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456159

RESUMO

Skin is constantly exposed to bacteria and antigens, and cutaneous innate immune sensing orchestrates adaptive immune responses. In its absence, skin pathogens can expand, entering deeper tissues and leading to life-threatening infectious diseases. To characterize skin-driven immunity better, we applied living bacteria, defined lipopeptides, and antigens cutaneously. We found suppression of immune responses due to cutaneous infection with Gram-positive S. aureus, which was based on bacterial lipopeptides. Skin exposure to Toll-like receptor (TLR)2-6-binding lipopeptides, but not TLR2-1-binding lipopeptides, potently suppressed immune responses through induction of Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs). Investigating human atopic dermatitis, in which Gram-positive bacteria accumulate, we detected high MDSC amounts in blood and skin. TLR2 activation in skin resident cells triggered interleukin-6 (IL-6), which induced suppressive MDSCs, which are then recruited to the skin suppressing T cell-mediated recall responses such as dermatitis. Thus, cutaneous bacteria can negatively regulate skin-driven immune responses by inducing MDSCs via TLR2-6 activation.


Assuntos
Células Mieloides/imunologia , Pele/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Receptor 2 Toll-Like/imunologia , Imunidade Adaptativa/imunologia , Animais , Antígenos/imunologia , Antígeno CD11b/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Humanos , Interleucina-6/biossíntese , Lipopeptídeos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/biossíntese , Pele/microbiologia , Staphylococcus aureus/imunologia , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia
7.
Cancer Immunol Immunother ; 70(5): 1343-1350, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141285

RESUMO

Immune checkpoint blocking (ICB) is a promising new tool of cancer treatment. Yet, the underlying therapeutic mechanisms are not fully understood. Here we investigated the role of dendritic cells (DCs) for the therapeutic effect of ICB in a λ-MYC-transgenic mouse model of endogenously arising B-cell lymphoma. The growth of these tumors can be effectively delayed by antibodies against CTLA-4 and PD-1. Tumor-infiltrating DCs from mice having received therapy showed an upregulation of costimulatory molecules as well as an augmented IL-12/IL-10 ratio as compared to untreated controls. Both alterations seemed to be induced by interferon-γ (IFN-γ), which is upregulated in T cells and natural killer cells upon ICB. Furthermore, the enhanced IL-12/IL-10 ratio, which favors Th1-prone antitumor T-cell responses, was a consequence of direct interaction of ICB antibodies with DCs. Importantly, the capability of tumor-infiltrating DCs of stimulating peptide-specific or allogeneic T-cell responses in vitro was improved when DCs were derived from ICB-treated mice. The data indicate that ICB therapy is not only effective by directly activating T cells, but also by triggering a complex network, in which DCs play a pivotal role at the interface between innate and adaptive antitumor responses.


Assuntos
Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfoma de Células B/imunologia , Animais , Antígeno CTLA-4/imunologia , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Genes myc/genética , Humanos , Linfoma de Células B/cirurgia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia
8.
Cancer Immunol Immunother ; 70(4): 1089-1099, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33113003

RESUMO

BACKGROUND: Hepatic immune-related adverse events (irAE) including elevated liver function tests (transaminases) occur in 1.4-22.3% of melanoma patients receiving immune checkpoint inhibitors (ICPI) and constitute a potentially serious toxicity that is challenging to treat. In contrast to the liver transaminases alanine aminotransferase (ALT) and aspartate aminotransferase (AST), only little is known about the frequency and impact of gamma-glutamyl transferase (GGT) elevations. METHODS: GGT determined prior to and during therapy of metastatic melanoma patients treated with ICPI were retrospectively assessed in two independent cohorts (PD-1: n = 218, Ipi + Nivo: n = 148). Overall survival (OS) and best objective response were analyzed according to baseline and immune-related GGT (irGGT) elevations during treatment. RESULTS: In multivariate analysis, OS was reduced in patients with elevated baseline GGT (PD-1 group: hazard ratio [HR] 1.76, p = .0073; Ipi + Nivo group: HR 1.77, p = .032). Immune-related GGT elevation was recorded in 17% (PD-1 group) and 38.5% (Ipi + Nivo group). Of these patients, the majority (81 and 68%, respectively) had normal ALT and AST and showed no clinical signs of hepatotoxicity. Patients who experienced irGGT elevation had superior response (PD-1 group: odds ratio [OR] 3.57, p = .00072; Ipi + Nivo group: OR 1.74, p = .12) and OS (PD-1 group: HR 0.37, p = .0016; Ipi + Nivo group: HR 0.33, p = .00050). CONCLUSIONS: The frequency of hepatic irAE is currently underestimated. The addition of the sensitive enzyme GGT to the laboratory panel before and during therapy with ICPI allows to detect two to three times more patients developing hepatic or hepatobiliary toxicity than known so far. Immune-related GGT elevations correlate with response and favorable survival. Precis for use in the Table of Contents The frequency of hepatotoxicity under immune checkpoint blockade is currently underestimated. We suggest the addition of gamma-glutamyl transferase to the laboratory panel in checkpoint inhibitor patients for the detection of hepatobiliary toxicity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/patologia , gama-Glutamiltransferase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Ipilimumab/administração & dosagem , Masculino , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Pessoa de Meia-Idade , Metástase Neoplásica , Nivolumabe/administração & dosagem , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
9.
Am J Pathol ; 190(10): 2155-2164, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679231

RESUMO

Aberrant DNA methylation is an epigenetic hallmark of melanoma, but the expression of DNA methyltransferase (Dnmt)-1 in melanocytic tumors is unknown. Dnmt1 expression was analyzed in primary melanocytes, melanoma cell lines, and 83 melanocytic tumors, and its associations with proliferation, mutational status, and response to B-Raf and mitogen-activated protein kinase kinase (MEK) inhibition were explored. Dnmt1 expression was increased incrementally from nevi [mean fluorescence intensity (MFI), 48.1; interquartile range, 41.7 to 59.6] to primary melanomas (MFI, 68.8; interquartile range, 58.4 to 77.0) and metastatic melanomas (MFI, 87.5; interquartile range, 77.1 to 114.5) (P < 0.001). Dnmt1 expression was correlated with Ki-67 expression (Spearman correlation, 0.483; P < 0.001) and was independent of BRAF mutation status (P = 0.55). In BRAF-mutant melanoma, Dnmt1 was down-regulated during response to B-Raf and MEK inhibition and was again up-regulated on drug resistance in vitro and in vivo. Degradation of Dnmt1 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid was associated with decreased cell viability in B-Raf inhibitor-sensitive and -resistant cell lines. This study demonstrates that Dnmt1 expression is correlated with proliferation in melanocytic tumors, is increased with melanoma progression, and is associated with response to B-Raf and MEK inhibition. Given its strong expression in metastatic melanoma, Dnmt1 may be a promising target for combined epigenetic and immunotherapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Melanoma/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Vorinostat/farmacologia , Melanoma Maligno Cutâneo
10.
Carcinogenesis ; 40(2): 289-302, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30753335

RESUMO

Cancer treatment with adoptively transferred tumor-associated antigen-specific CD4+ T-helper cells is a promising immunotherapeutic approach. In the pancreatic cancer model RIP-Tag2, the intraperitoneal (i.p.) application of Tag-specific TH1 cells exhibited a profound antitumoral efficiency. We investigated, whether an intravenous (i.v.) application of Tag-TH1 cells induces an equivalent therapeutic effect. Adoptively transferred fluorescent Tag-TH1 cells revealed a pronounced homing to the tumors after either i.p. or i.v. transfer, and both routes induced an almost equivalent therapeutic effect as demonstrated by magnetic resonance imaging, blood glucose level course and histology. The i.v. administration of Tag-TH1 cells induced p16INK4-positive/Ki67-negative tumor senescence more efficiently than i.p. administration. Both routes replenish host CD4+ T cells by transferred T cells and recruitment of B and dendritic cells to the tumors while reducing CD8+ T cells and depleting macrophages. Both administration routes efficiently induced a similar antitumoral efficiency despite the pronounced senescence induction after i.v. administration. Thus, a combinatory i.v./i.p. injection of therapeutic cells might overcome limitations of the individual routes and improve therapeutic efficacy in solid tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Senescência Celular/imunologia , Neoplasias/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Microambiente Tumoral/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Camundongos , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
11.
Eur J Immunol ; 48(9): 1588-1591, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007005

RESUMO

Dimethyl fumarate (DMF) promotes an IL-17Alow IFN-γlow IL-4+ CD4+ T cell phenotype. Adoptive transfer of in vitro DMF-treated myelin peptide-reactive IL-17Alow IFN-γlow IL-4+ CD4+ T cells prior to immunization for EAE reduces the severity of encephalomyelitis. This beneficial effect of transferred DMF-treated CD4+ T cells requires an early in vivo recall.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fumarato de Dimetilo/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Imunossupressores/farmacologia , Interferon gama/imunologia , Interleucina-4/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/transplante , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-4/biossíntese , Camundongos , Células Th1/imunologia , Células Th2/imunologia
12.
J Am Acad Dermatol ; 80(5): 1299-1307.e7, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30703453

RESUMO

BACKGROUND: Melanoma incidence rates rise as people age, but the impact of aging on distant metastasis is unclear. OBJECTIVE: To investigate how timing, pattern, and extent of distant metastasis is influenced by age. METHODS: Analysis of a single-center cohort of 1457 patients of the German Central Malignant Melanoma Registry with prospectively documented follow-up. Findings were compared with those for 1682 patients from 5 different institutions. All patients presented initially with stage IA to IIC and developed distant metastasis in their further disease course. RESULTS: The number of metastatic sites decreased with increasing age at melanoma diagnosis (P < .001). The rate of stage M1d disease decreased from 50.2% in patients aged 50 years or younger to 30.1% in patients older than 70 years, and the rate of stage M1b disease increased from 5.8% to 21.5%. The rate of lung metastases remained stable in all investigated age groups (P = .54). Distant metastases occurred earlier and were more synchronized in patients older than 70 years than in patients aged 50 years or younger. An age-dependent decrease in metastatic sites and stable rate of lung metastasis were found and confirmed by data on the multi-institutional cohort. LIMITATIONS: The study was not population based. CONCLUSION: Pattern, timing, and extent of distant metastasis change as people age. These findings may be considered when treating patients with melanoma of different ages.


Assuntos
Fatores Etários , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/secundário , Melanoma/secundário , Neoplasias Cutâneas/patologia , Idoso , Feminino , Seguimentos , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Sistema de Registros , Fatores de Tempo
13.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23376950

RESUMO

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Assuntos
Senescência Celular/imunologia , Citocinas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Células Th1/imunologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Ciclo Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Oncogenes/genética , Fosfosserina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/metabolismo
14.
J Allergy Clin Immunol ; 142(5): 1403-1414, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29596939

RESUMO

Immune checkpoints are accessory molecules that either promote or inhibit T-cell activation. Two inhibitory molecules, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), got high attention, as inhibition of CTLA-4 or PD-1 signaling provides the first immune therapy that significantly improves the survival of patients with metastatic solid cancers. Inhibition of CTLA-4 or PD-1 was first studied in and approved for patients with metastatic melanoma. Blocking immune checkpoints is also efficient in non-small-cell lung cancer, renal cell cancers, hypermutated gastrointestinal cancers, and others. Immune responses, whether directed against infections or against tumors, are divided into 2 phases: an initiation phase and an activation phase, where the immune system recognizes a danger signal and becomes activated by innate signals to fight the danger. This reaction is fundamental for the control of infections and cancer, but needs to be turned off once the danger is controlled, because persistence of this activation ultimately causes severe tissue damage. Therefore, each activation of the immune system is followed by a termination phase, where endogenous immune suppressor molecules arrest immune responses to prevent harmful damage. In the case of cancer immune therapies, therapeutic approaches classically enhanced the initiation and activation of immune responses to increase the emergence and the efficacy of cytotoxic T lymphocytes (CTL) against cancers. In sharp contrast, immune checkpoint blockade focuses on the termination of immune responses by inhibiting immune suppressor molecules. It thus prevents the termination of immune responses or even awakes those CTLs that became exhausted during an immune response. Therefore, blocking negatively regulating immune checkpoints restores the capacity of exhausted CTL to kill the cancer they infiltrate. In addition, they drive surviving cancer cells into a still poorly defined state of dormancy. As the therapy also awakes self-reactive CTL, one downside of the therapy is the induction of organ-specific autoimmune diseases. The second downside is the exorbitant drug price that withdraws patients in need from a therapy that was developed by academic research, which impairs further academic treatment development and financially charges the public health system.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/efeitos adversos , Doenças Autoimunes/induzido quimicamente , Humanos , Interferons/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
15.
Cancer Metastasis Rev ; 36(2): 357-365, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28391403

RESUMO

The immune response is a first-line systemic defense to curb tumorigenesis and metastasis. Much effort has been invested to design antitumor interventions that would boost the immune system in its fight to defeat or contain cancerous growth. Tumor vaccination protocols, transfer of tumor-associated-antigen-specific T cells, T cell activity-regulating antibodies, and recombinant cytokines are counted among a toolbox filled with immunotherapeutic options. Although the mechanistic underpinnings of tumor immune control remain to be deciphered, these are studied with the goal of cancer cell destruction. In contrast, tumor dormancy is considered as a dangerous equilibrium between cell proliferation and cell death. There is, however, emerging evidence that tumor immune control can be achieved in the absence of overt cancer cell death. Here, we propose cytokine-induced senescence (CIS) by transfer of T helper-1 cells (TH1) or by recombinant cytokines as a novel therapeutic intervention for cancer treatment. Immunity-induced senescence triggers a stable cell cycle arrest of cancer cells. It engages the immune system to construct defensive, isolating barriers around tumors, and prevents tumor growth through the delivery or induction of TH1-cytokines in the tumor microenvironment. Keeping cancer cells in a non-proliferating state is a strategy, which directly copes with the lost homeostasis of aggressive tumors. As most studies show that even after efficient cancer therapies minimal residual disease persists, we suggest that therapies should include immune-mediated senescence for cancer surveillance. CIS has the goal to control the residual tumor and to transform a deadly disease into a state of silent tumor persistence.


Assuntos
Citocinas/imunologia , Neoplasias/imunologia , Animais , Processos de Crescimento Celular/imunologia , Senescência Celular/imunologia , Citocinas/farmacologia , Humanos , Monitorização Imunológica , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Auxiliares-Indutores/imunologia
16.
Cell Physiol Biochem ; 51(3): 1103-1118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30476917

RESUMO

BACKGROUND/AIMS: Cellular senescence, or permanent growth arrest, is known as an effective tumor suppressor mechanism that can be induced by different stressors, such as oncogenes, chemotherapeutics or cytokine cocktails. Previous studies demonstrated that the growth-repressing state of oncogene-induced senescent cells depends on argonaute protein 2 (Ago2)-mediated transcriptional gene silencing and Ago2/Rb corepression of E2F-dependent cell cycle genes. Cytokine-induced senescence (CIS) likewise depends on activation of the p16Ink4a/Rb pathway, and consecutive inactivation of the E2F family of transcription factors. In the present study, we therefore analyzed the role of Ago2 in CIS. METHODS: Human cancer cell lines were treated with interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) to induce senescence. Senescence was determined by growth assays and measurement of senescence-associated ß-galactosidase (SA-ß-gal) activity, Ago2 translocation by Ago2/ Ki67 immunofluorescence staining and western blot analysis, and gene transcription by quantitative polymerase chain reaction (qPCR). RESULTS: IFN-γ and TNF permanently stopped cell proliferation and time-dependently increased SA-ß-gal activity. After 24 - 48 h of cytokine treatment, Ago2 translocated from the cytoplasm into the nucleus of Ki67-negative cells, an effect which was shown to be reversible. Importantly, the proinflammatory cytokine cocktail suppressed Ago2-regulated cell cycle control genes, and siRNA-mediated depletion of Ago2 interfered with cytokine-induced growth inhibition. CONCLUSION: IFN-γ and TNF induce a stable cell cycle arrest of cancer cells that is accompanied by a fast nuclear Ago2 translocation and repression of Ago2-regulated cell cycle control genes. As Ago2 downregulation impairs cytokine-induced growth regulation, Ago2 may contribute to tissue homeostasis in human cancers.


Assuntos
Proteínas Argonautas/metabolismo , Senescência Celular , Citocinas/metabolismo , Neoplasias/metabolismo , Transporte Ativo do Núcleo Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Interferon gama/metabolismo , Células MCF-7 , Fatores de Necrose Tumoral/metabolismo
17.
Exp Dermatol ; 27(4): 318-326, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29569765

RESUMO

Staphylococcus epidermidis colonises human skin without apparent inflammation, but a dominance of S. epidermidis and S. aureus is characteristic of cutaneous microbial dysbiosis in atopic dermatitis (AD). While S. aureus can trigger AD, the role of S. epidermidis is less understood. We characterised consequences of innate immune sensing of lipoteichoic acid (LTA) preparations derived from S. epidermidis (epi-LTA) or S. aureus (aureus-LTA). Therefore, dendritic cell (DC) activation and consecutive priming of antigen-specific T cells following exposure of DC to epi-LTA or aureus-LTA were investigated. Mimicking acute AD, exposure of DC to IL-4 and LTAs was analysed. Exposure to epi-LTA or aureus-LTA activated human immune cells and murine dendritic cells (DCs) via TLR2/MyD88, however, resulting in divergent immune profiles. Differences between LTAs were significant for IL-6, IL-12p40 and IL-12p70 but not for IL-10, which was best reflected by the IL-12p70-to-IL-10 ratio being IL-10-balanced for epi-LTA but pro-inflammatory for aureus-LTA. LTA-exposed DCs activated CD4+ T cells; however, while T-cell-derived IL-10 was equivalent between LTAs, IFN-γ and IL-17 were significantly higher for aureus-LTA. Mimicking acute AD by exposing DCs to IL-4 and LTAs revealed that IL-4 significantly and uniformly suppressed epi-LTA-induced cytokine production, keeping the IL-12p70-to-IL-10 ratio balanced. In contrast, exposure of DCs to aureus-LTA and IL-4 enhanced IL-12p70 but suppressed IL-10 levels, further unbalancing the IL-12p70-to-IL-10 ratio. These data demonstrate opposing immune consequences following exposure to staphylococcal LTAs. Epi-LTA induced IL-10-balanced, aureus-LTA pro-inflammatory immune profiles.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Staphylococcus aureus , Staphylococcus epidermidis , Ácidos Teicoicos/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Técnicas de Cocultura , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-12/metabolismo , Interleucina-4/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição STAT6/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(4): 1161-6, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25587131

RESUMO

T cells are key players in inflammation, autoimmune diseases, and immunotherapy. Thus, holistic and noninvasive in vivo characterizations of the temporal distribution and homing dynamics of lymphocytes in mammals are of special interest. Herein, we show that PET-based T-cell labeling facilitates quantitative, highly sensitive, and holistic monitoring of T-cell homing patterns in vivo. We developed a new T-cell receptor (TCR)-specific labeling approach for the intracellular labeling of mouse T cells. We found that continuous TCR plasma membrane turnover and the endocytosis of the specific (64)Cu-monoclonal antibody (mAb)-TCR complex enables a stable labeling of T cells. The TCR-mAb complex was internalized within 24 h, whereas antigen recognition was not impaired. Harmful effects of the label on the viability, DNA-damage and apoptosis-necrosis induction, could be minimized while yielding a high contrast in in vivo PET images. We were able to follow and quantify the specific homing of systemically applied (64)Cu-labeled chicken ovalbumin (cOVA)-TCR transgenic T cells into the pulmonary and perithymic lymph nodes (LNs) of mice with cOVA-induced airway delayed-type hypersensitivity reaction (DTHR) but not into pulmonary and perithymic LNs of naïve control mice or mice diseased from turkey or pheasant OVA-induced DTHR. Our protocol provides consequent advancements in the detection of small accumulations of immune cells in single LNs and specific homing to the sites of inflammation by PET using the internalization of TCR-specific mAbs as a specific label of T cells. Thus, our labeling approach is applicable to other cells with constant membrane receptor turnover.


Assuntos
Anticorpos Monoclonais/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de Antígenos/antagonistas & inibidores , Linfócitos T/diagnóstico por imagem , Animais , Apoptose/imunologia , Radioisótopos de Cobre , Dano ao DNA/imunologia , Camundongos , Traçadores Radioativos , Radiografia , Receptores de Antígenos/imunologia , Linfócitos T/imunologia
20.
Proc Natl Acad Sci U S A ; 112(7): 2163-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646481

RESUMO

Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ-producing T(H)1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12-producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4-mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/T(H)17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/T(H)17 responses without blocking IL-12/T(H)1, selective IL-4-mediated IL-23/T(H)17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12-dependent T(H)1 responses.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Inativação Gênica , Inflamação/fisiopatologia , Interleucina-23/genética , Interleucina-4/fisiologia , Células Th17/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa