Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Liver Int ; 42(5): 1185-1203, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35129269

RESUMO

BACKGROUND AND AIMS: Leukocyte infiltration is a hallmark of hepatic inflammation. The Junctional Adhesion Molecule A (JAM-A) is a crucial regulator of leukocyte extravasation and is upregulated in human viral fibrosis. Reduced shear stress within hepatic sinusoids and the specific phenotype of liver sinusoidal endothelial cells (LSEC) cumulate in differing adhesion characteristics during liver fibrosis. The aim of this study was to define the functional role of cell-specific adhesion molecule JAM-A during hepatic fibrogenesis. METHODS: Complete, conditional (intestinal epithelial; endothelial) and bone marrow chimeric Jam-a knockout animals and corresponding C57Bl/6 wild-type animals were treated with carbon tetrachloride (CCl4 , 6 weeks). For functional analyses of JAM-A, comprehensive in vivo studies, co-culture models and flow-based adhesion assays were performed. RESULTS: Complete and bone marrow-derived Jam-a-/- animals showed aggravated fibrosis with increased non-sinusoidal, perivascular accumulation of CD11b+ F4/80+ monocyte-derived macrophages in contrast to wild-type mice. Despite being associated with disturbed epithelial barrier function, an intestinal epithelial Jam-a knockout did not affect fibrogenesis. In endothelial-specific Jam-a-/- animals, liver fibrosis was aggravated alongside sinusoid capillarization and hepatic stellate cell (HSC) activation. HSC activation is induced via Jam-a-/- LSEC-derived secretion of soluble factors. Sinusoid CD31 expression and hedgehog gene signalling were increased, but leukocyte infiltration and adhesion to LSECs remained unaffected. CONCLUSIONS: Our models decipher cell-specific JAM-A to exert crucial functions during hepatic fibrogenesis. JAM-A on bone marrow-derived cells regulates non-sinusoidal vascular immune cell recruitment, while endothelial JAM-A controls liver sinusoid capillarization and HSC quiescence.


Assuntos
Molécula A de Adesão Juncional , Animais , Células Endoteliais/metabolismo , Fibrose , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Molécula A de Adesão Juncional/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL
2.
J Surg Res ; 192(2): 312-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25145903

RESUMO

BACKGROUND: The systemic palliative chemotherapy of locally extended gastrointestinal and hepatobiliary tumors is associated with a considerable burden for the patient. The aim of this project was to develop a new drug release system to improve the local stent therapy in these patients as a proof of concept study. For this purpose, polymer filaments were modified with drug-loaded polymer microgels that allow selective release of the active substance by photochemical triggering using laser radiation. Integrated into a stent system, the better local tumor control could thus contribute to a significant increase in the quality of life of patients. METHODS: A standard mammalian cell line and two carcinoma cell lines were established. By Fluorescence activated cell sorting (FACS), the cytotoxicity of the different materials was determined in vitro before and after drug loading with the chemotherapeutic agent 5-Fluorouracil (5-FU). For this purpose, the locally applied 5-FU concentration was previously determined by Bromdesoxyuridin assay. 5-FU dimer was synthesized by photo-induced dimerization of 5-FU in the presence of benzophenone in methanol. The chemical structure of 5-FU dimer was confirmed with Hydrogen-1 nuclear magnetic resonance and Fluorine-19 nuclear magnetic resonance. 5-FU dimer is nonsoluble in water and can be easily incorporated in polymer microgels modified with hydrophobic binding domains (cyclodextrin). After laser irradiation, 5-FU dimer decomposes and 5-FU can be released from microgels. Finally, the measurements were repeated after this laser-induced drug release. RESULTS: In FACS analysis, neither the microgels nor the microgel cumarin complexes showed a significant difference in comparison with the negative control with H2O and therefore no toxic effect on the cell lines. After loading with the 5-FU dimer, there was no significant cell death (contrary to the pure 5-FU monomer, which dose had been previously tested as highly toxic). After laser-induced dissociation back to monomer and the associated drug release, FACS analysis showed cytotoxicity. CONCLUSIONS: It was possible to develop 5-FU dimerloaded microgels, which show no cytotoxic effect on cell lines before laser irradiation. After dissociation back to 5-FU monomer by selective photochemical triggering using laser irradiation, the active substance was released. Thus, a new drug release system has been created and tested in vitro. For further development, integration into a stent system and for in vivo follow-up evaluation more studies need to be conducted.


Assuntos
Adenocarcinoma/patologia , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/farmacocinética , Neoplasias Pancreáticas/patologia , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Bromodesoxiuridina/metabolismo , Linhagem Celular Tumoral , Dimerização , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Fluoruracila/química , Interações Hidrofóbicas e Hidrofílicas , Lasers , Cuidados Paliativos/métodos , Solubilidade , Stents , beta-Ciclodextrinas/farmacocinética
3.
Hepatol Commun ; 8(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836805

RESUMO

BACKGROUND: Extended liver resection is the only treatment option for perihilar cholangiocarcinoma (pCCA). Bile salts and the gut hormone FGF19, both promoters of liver regeneration (LR), have not been investigated in patients undergoing resection for pCCA. We aimed to evaluate the bile salt-FGF19 axis perioperatively in pCCA and study its effects on LR. METHODS: Plasma bile salts, FGF19, and C4 (bile salt synthesis marker) were assessed in patients with pCCA and controls (colorectal liver metastases), before and after resection on postoperative days (PODs) 1, 3, and 7. Hepatic bile salts were determined in intraoperative liver biopsies. RESULTS: Partial liver resection in pCCA elicited a sharp decline in bile salt and FGF19 plasma levels on POD 1 and remained low thereafter, unlike in controls, where bile salts rose gradually. Preoperatively, suppressed C4 in pCCA normalized postoperatively to levels similar to those in the controls. The remnant liver volume and postoperative bilirubin levels were negatively associated with postoperative C4 levels. Furthermore, patients who developed postoperative liver failure had nearly undetectable C4 levels on POD 7. Hepatic bile salts strongly predicted hyperbilirubinemia on POD 7 in both groups. Finally, postoperative bile salt levels on day 7 were an independent predictor of LR. CONCLUSIONS: Partial liver resection alters the bile salt-FGF19 axis, but its derailment is unrelated to LR in pCCA. Postoperative monitoring of circulating bile salts and their production may be useful for monitoring LR.


Assuntos
Ácidos e Sais Biliares , Neoplasias dos Ductos Biliares , Fatores de Crescimento de Fibroblastos , Hepatectomia , Tumor de Klatskin , Regeneração Hepática , Humanos , Masculino , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/sangue , Feminino , Tumor de Klatskin/cirurgia , Tumor de Klatskin/patologia , Tumor de Klatskin/sangue , Pessoa de Meia-Idade , Regeneração Hepática/fisiologia , Idoso , Estudos de Casos e Controles , Fígado/metabolismo , Fígado/cirurgia
4.
Cell Death Dis ; 12(1): 95, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462215

RESUMO

Intestinal ischemia-reperfusion (IR) injury is associated with high mortality rates, which have not improved in the past decades despite advanced insight in its pathophysiology using in vivo animal and human models. The inability to translate previous findings to effective therapies emphasizes the need for a physiologically relevant in vitro model to thoroughly investigate mechanisms of IR-induced epithelial injury and test potential therapies. In this study, we demonstrate the use of human small intestinal organoids to model IR injury by exposing organoids to hypoxia and reoxygenation (HR). A mass-spectrometry-based proteomics approach was applied to characterize organoid differentiation and decipher protein dynamics and molecular mechanisms of IR injury in crypt-like and villus-like human intestinal organoids. We showed successful separation of organoids exhibiting a crypt-like proliferative phenotype, and organoids exhibiting a villus-like phenotype, enriched for enterocytes and goblet cells. Functional enrichment analysis of significantly changing proteins during HR revealed that processes related to mitochondrial metabolism and organization, other metabolic processes, and the immune response were altered in both organoid phenotypes. Changes in protein metabolism, as well as mitophagy pathway and protection against oxidative stress were more pronounced in crypt-like organoids, whereas cellular stress and cell death associated protein changes were more pronounced in villus-like organoids. Profile analysis highlighted several interesting proteins showing a consistent temporal profile during HR in organoids from different origin, such as NDRG1, SDF4 or DMBT1. This study demonstrates that the HR response in human intestinal organoids recapitulates properties of the in vivo IR response. Our findings provide a framework for further investigations to elucidate underlying mechanisms of IR injury in crypt and/or villus separately, and a model to test therapeutics to prevent IR injury.


Assuntos
Hipóxia Celular/imunologia , Intestinos/fisiopatologia , Organoides/fisiopatologia , Proteômica/métodos , Traumatismo por Reperfusão/fisiopatologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos
5.
Neoplasia ; 22(1): 22-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765939

RESUMO

The microenvironment of solid tumors is a key determinant of therapy efficacy. The co-occurrence of oxygen and nutrient deprivation is a common phenomenon of the tumor microenvironment and associated with treatment resistance. Cholangiocarcinoma (CCA) is characterized by a very poor prognosis and pronounced chemoresistance. A better understanding of the underlying molecular mechanisms is urgently needed to improve therapy strategies against CCA. We sought to investigate the importance of the conditionally essential amino acid glutamine, a centrally important nutrient for a variety of solid tumors, for CCA. Glutamine levels were strongly decreased in CCA samples and the growth of established human CCA cell lines was highly dependent on glutamine. Using gradual reduction of external glutamine, we generated derivatives of CCA cell lines which were able to grow without external glutamine (termed glutamine-depleted (GD)). To analyze the effects of coincident oxygen and glutamine deprivation, GD cells were treated with cisplatin or gemcitabine under normoxia and hypoxia. Strikingly, the well-established phenomenon of hypoxia-induced chemoresistance was completely reversed in GD cells. In order to better understand the underlying mechanisms, we focused on the oncogene c-Myc. The combination of cisplatin and hypoxia led to sustained c-Myc protein expression in wildtype cells. In contrast, c-Myc expression was reduced in response to the combinatorial treatment in GD cells, suggesting a functional importance of c-Myc in the process of hypoxia-induced chemoresistance. In summary, these findings indicate that the mechanisms driving adaption to tumor microenvironmental changes and their relevance for the response to therapy are more complex than expected.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glutamina/metabolismo , Hipóxia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Metabolismo Energético , Feminino , Humanos , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa