Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34298159

RESUMO

The mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway. Mitogen-activated protein kinase kinase (MEK) inhibition is initially effective in targeting these cancers, but reflexive activation of mammalian target of rapamycin (mTOR) signaling contributes to frequent therapy resistance. We have previously demonstrated that combination treatment with the MEK inhibitor trametinib and the dual mammalian target of rapamycin complex 1/2 inhibitor TAK228 improves survival and decreases vascularization in a BRAFV600E mutant glioma model. To elucidate the mechanism of action of this combination therapy and understand the ensuing tumor response, we performed comprehensive unbiased proteomic and phosphoproteomic characterization of BRAFV600E mutant glioma xenografts after short-course treatment with trametinib and TAK228. We identified 13,313 proteins and 30,928 localized phosphosites, of which 12,526 proteins and 17,444 phosphosites were quantified across all samples (data available via ProteomeXchange; identifier PXD022329). We identified distinct response signatures for each monotherapy and combination therapy and validated that combination treatment inhibited activation of the mitogen-activated protein kinase and mTOR pathways. Combination therapy also increased apoptotic signaling, suppressed angiogenesis signaling, and broadly suppressed the activity of the cyclin-dependent kinases. In response to combination therapy, both epidermal growth factor receptor and class 1 histone deacetylase proteins were activated. This study reports a detailed (phospho)proteomic analysis of the response of BRAFV600E mutant glioma to combined MEK and mTOR pathway inhibition and identifies new targets for the development of rational combination therapies for BRAF-driven tumors.


Assuntos
Benzoxazóis/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinonas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzoxazóis/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia
2.
J Pediatr Hematol Oncol ; 43(1): e123-e126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459718

RESUMO

BACKGROUND: Prior reports have shown the utility of conventional lipiodol-based transarterial chemoembolization in hepatoblastoma. The authors describe the first reported case of hepatoblastoma treated with drug-eluting bead transarterial chemoembolization (DEB-TACE). OBSERVATIONS: An 11-month-old infant presented with hepatoblastoma measuring 14.3 cm. A trial of cisplatin chemotherapy followed by sequential DEB-TACE to the tumor's feeding vasculature reduced the mass to 5.3 cm. The patient tolerated both sessions of DEB-TACE without any major complication. Having demonstrated adequate disease control, the patient then underwent successful liver transplantation. CONCLUSION: This report provides promising evidence for the treatment of hepatoblastoma with DEB-TACE.


Assuntos
Antineoplásicos/uso terapêutico , Quimioembolização Terapêutica/métodos , Cisplatino/uso terapêutico , Hepatoblastoma/terapia , Neoplasias Hepáticas/terapia , Transplante de Fígado/métodos , Terapia Combinada , Feminino , Hepatoblastoma/patologia , Humanos , Lactente , Neoplasias Hepáticas/patologia , Prognóstico
3.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920124

RESUMO

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


Assuntos
Proliferação de Células/genética , Neoplasias do Sistema Nervoso Central/genética , Proteínas do Grupo Polycomb/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/patologia , Duplicação Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Sequências de Repetição em Tandem/genética
5.
Neuropathology ; 39(2): 71-77, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632221

RESUMO

MYC amplification is common in Group 3 medulloblastoma and is associated with poor survival. Group 3 and Group 4 medulloblastomas are also known to have elevated levels of histone H3-lysine 27-tri-methylation (H3K27me3), at least in part due to high expression of the H3K27 methyltransferase enhancer of zest homologue 2 (EZH2), which can be regulated by MYC. We therefore examined whether MYC expression is associated with elevated EZH2 and H3K27me3 in medulloblastoma, and if high-MYC medulloblastomas are particularly sensitive to pharmacological EZH2 blockade. Western blot analysis of low (DAOY, UW228, CB SV40) and high (DAOY-MYC, UW228-MYC, CB-MYC, D425) MYC cell lines showed that higher levels of EZH2 and H3K27me3 were associated with elevated MYC. In fixed medulloblastoma samples examined using immunohistochemistry, most MYC positive tumors also had high H3K27me3, but many MYC negative ones did as well, and the correlation was not statistically significant. All high MYC lines tested were sensitive to the EZH2 inhibitor EPZ6438. Many low MYC lines also grew more slowly in the presence of EPZ6438, although DAOY-MYC cells responded more strongly than parent DAOY cultures with lower MYC levels. We find that higher MYC levels are associated with increased EZH2, and pharmacological blockade of EZH2 is a potential therapeutic strategy for aggressive medulloblastoma with elevated MYC.


Assuntos
Neoplasias Cerebelares/enzimologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/administração & dosagem , Meduloblastoma/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Técnicas de Silenciamento de Genes , Humanos , Meduloblastoma/tratamento farmacológico
7.
Int J Cancer ; 138(5): 1246-55, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26422827

RESUMO

Notch signaling can promote tumorigenesis in the nervous system and plays important roles in stem-like cancer cells. However, little is known about how Notch inhibition might alter tumor metabolism, particularly in lesions arising in the brain. The gamma-secretase inhibitor MRK003 was used to treat glioblastoma neurospheres, and they were subdivided into sensitive and insensitive groups in terms of canonical Notch target response. Global metabolomes were then examined using proton magnetic resonance spectroscopy, and changes in intracellular concentration of various metabolites identified which correlate with Notch inhibition. Reductions in glutamate were verified by oxidation-based colorimetric assays. Interestingly, the alkylating chemotherapeutic agent temozolomide, the mTOR-inhibitor MLN0128, and the WNT inhibitor LGK974 did not reduce glutamate levels, suggesting that changes to this metabolite might reflect specific downstream effects of Notch blockade in gliomas rather than general sequelae of tumor growth inhibition. Global and targeted expression analyses revealed that multiple genes important in glutamate homeostasis, including glutaminase, are dysregulated after Notch inhibition. Treatment with an allosteric inhibitor of glutaminase, compound 968, could slow glioblastoma growth, and Notch inhibition may act at least in part by regulating glutaminase and glutamate.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Metaboloma , Receptores Notch/antagonistas & inibidores , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Óxidos S-Cíclicos/farmacologia , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Homeostase , Humanos , Tiadiazóis/farmacologia
8.
J Pediatr Hematol Oncol ; 38(4): 249-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26989915

RESUMO

Great progress has been made in many areas of pediatric oncology. However, tumors of the central nervous system (CNS) remain a significant challenge. A recent explosion of data has led to an opportunity to understand better the molecular basis of these diseases and is already providing a foundation for the pursuit of rationally chosen therapeutics targeting relevant molecular pathways. The molecular biology of pediatric brain tumors is shifting from a singular focus on basic scientific discovery to a platform upon which insights are being translated into therapies.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Criança , Glioma , Humanos , Meduloblastoma , Biologia Molecular/métodos , Biologia Molecular/tendências
10.
Acta Neuropathol ; 127(6): 881-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24297113

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a highly morbid form of pediatric brainstem glioma. Here, we present the first comprehensive protein, mRNA, and methylation profiles of fresh-frozen DIPG specimens (n = 14), normal brain tissue (n = 10), and other pediatric brain tumors (n = 17). Protein profiling identified 2,305 unique proteins indicating distinct DIPG protein expression patterns compared to other pediatric brain tumors. Western blot and immunohistochemistry validated upregulation of Clusterin (CLU), Elongation Factor 2 (EF2), and Talin-1 (TLN1) in DIPGs studied. Comparisons to mRNA expression profiles generated from tumor and adjacent normal brain tissue indicated two DIPG subgroups, characterized by upregulation of Myc (N-Myc) or Hedgehog (Hh) signaling. We validated upregulation of PTCH, a membrane receptor in the Hh signaling pathway, in a subgroup of DIPG specimens. DNA methylation analysis indicated global hypomethylation of DIPG compared to adjacent normal tissue specimens, with differential methylation of 24 genes involved in Hh and Myc pathways, correlating with protein and mRNA expression patterns. Sequencing analysis showed c.83A>T mutations in the H3F3A or HIST1H3B gene in 77 % of our DIPG cohort. Supervised analysis revealed a unique methylation pattern in mutated specimens compared to the wild-type DIPG samples. This study presents the first comprehensive multidimensional protein, mRNA, and methylation profiling of pediatric brain tumor specimens, detecting the presence of two subgroups within our DIPG cohort. This multidimensional analysis of DIPG provides increased analytical power to more fully explore molecular signatures of DIPGs, with implications for evaluating potential molecular subtypes and biomarker discovery for assessing response to therapy.


Assuntos
Neoplasias do Tronco Encefálico/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Adolescente , Adulto , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Tronco Encefálico/genética , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Glioma/genética , Histonas/genética , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Proteômica , RNA Mensageiro/metabolismo , Adulto Jovem
11.
Curr Treat Options Oncol ; 15(4): 581-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194927

RESUMO

OPINION STATEMENT: Approximately 70 % of newly diagnosed children with medulloblastoma (MB) will be classified as "standard risk": their tumor is localized to the posterior fossa, they undergo a near or gross total resection, the tumor does not meet the criteria for large cell/anaplastic histology, and there is no evidence of neuroaxis dissemination by brain/spine MRI and lumbar puncture for cytopathology. Following surgical recovery, they are treated with craniospinal radiation therapy with a boost to the posterior fossa or tumor bed. Adjuvant therapy for approximately 1 year follows anchored by the use of alkylators, platinators, and microtubule inhibitors. This approach to standard risk MB works; greater than 80 % of patients will be cured, and such approaches are arguably the standard of care worldwide for such children. Despite this success, some children with standard risk features will relapse and die of recurrent disease despite aggressive salvage therapy. Moreover, current treatment, even when curative causes life-long morbidity in those who survive, and the consequences are age dependent. For the 20-year-old patient, damage to the cerebellum from surgery conveys greater risk than craniospinal radiation; however, for the 3-year-old patient, the opposite is true. The challenge for the neuro-oncologist today is how to identify accurately patients who need less therapy as well as those for whom current therapy is inadequate. As molecular diagnostics comes of age in brain tumors, the question becomes how to best implement novel methods of risk stratification. Are we able to obtain specific information about the tumor's biology in an increasingly rapid and reliable way, and utilize these findings in the upfront management of these tumors? Precision medicine should allow us to tailor therapy to the specific drivers of each patient's tumor. Regardless of how new approaches are implemented, it is likely that we will no longer be able to have a single standard approach to standard risk medulloblastoma in the near future.


Assuntos
Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/terapia , Meduloblastoma/diagnóstico , Meduloblastoma/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Gerenciamento Clínico , Humanos , Lactente , Recém-Nascido , Adulto Jovem
12.
Laryngoscope ; 134(7): 3253-3259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38525973

RESUMO

OBJECTIVES: Medical therapies to limit disease recurrence are critically needed for recurrent respiratory papillomatosis (RRP). Systemic bevacizumab is emerging as an exciting adjuvant therapy toward this end, but uptake has been poor due to the lack of experience and awareness of best prescribing practices. The objective of this study was to describe a single tertiary care academic medical center's experience using systemic bevacizumab for the treatment of RRP. METHODS: A retrospective review was performed to identify patients with RRP on systemic bevacizumab. Demographic and clinical characteristics, findings on imaging reports, and disease response at all anatomic subsites involved in papilloma were documented. RESULTS: Of the 17 RRP patients on systemic bevacizumab, 9 (52.9%) were male, and 12 (70.6%) were diagnosed with juvenile-onset RRP. The total lifetime number of surgeries was high, with more than half (n = 9; 52.9%) undergoing more than 50 surgeries. Following induction of systemic bevacizumab, a significant reduction in patients with laryngeal (n = 15; 94.1% vs. n = 7; 41.2%, p < 0.001) and tracheal (n = 11; 64.7% vs. n = 5; 29.4%, p = 0.04) RRP was noted. Surgical frequency was significantly lower following systemic bevacizumab (2.5 vs. 0.5 surgeries per year; p < 0.001). The most common complications were new-onset hypertension (n = 4; 23.5%) and proteinuria (n = 5; 29.4%). CONCLUSION: Systemic bevacizumab is effective in reducing the number of surgeries needed for RRP while exhibiting a relatively safe complication profile. Papillomas in the larynx and trachea are most responsive to systemic bevacizumab, while pulmonary RRP is most likely to exhibit a partial-to-stable response. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:3253-3259, 2024.


Assuntos
Bevacizumab , Infecções por Papillomavirus , Infecções Respiratórias , Humanos , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Masculino , Estudos Retrospectivos , Feminino , Infecções Respiratórias/tratamento farmacológico , Infecções por Papillomavirus/tratamento farmacológico , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Resultado do Tratamento , Inibidores da Angiogênese/uso terapêutico , Pré-Escolar , Antineoplásicos Imunológicos/uso terapêutico
13.
Neurooncol Adv ; 6(1): vdae023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468866

RESUMO

Background: Diffuse intrinsic pontine glioma (DIPG) is a uniformly lethal brainstem tumor of childhood, driven by histone H3 K27M mutation and resultant epigenetic dysregulation. Epigenomic analyses of DIPG have shown global loss of repressive chromatin marks accompanied by DNA hypomethylation. However, studies providing a static view of the epigenome do not adequately capture the regulatory underpinnings of DIPG cellular heterogeneity and plasticity. Methods: To address this, we performed whole-genome bisulfite sequencing on a large panel of primary DIPG specimens and applied a novel framework for analysis of DNA methylation variability, permitting the derivation of comprehensive genome-wide DNA methylation potential energy landscapes that capture intrinsic epigenetic variation. Results: We show that DIPG has a markedly disordered epigenome with increasingly stochastic DNA methylation at genes regulating pluripotency and developmental identity, potentially enabling cells to sample diverse transcriptional programs and differentiation states. The DIPG epigenetic landscape was responsive to treatment with the hypomethylating agent decitabine, which produced genome-wide demethylation and reduced the stochasticity of DNA methylation at active enhancers and bivalent promoters. Decitabine treatment elicited changes in gene expression, including upregulation of immune signaling such as the interferon response, STING, and MHC class I expression, and sensitized cells to the effects of histone deacetylase inhibition. Conclusions: This study provides a resource for understanding the epigenetic instability that underlies DIPG heterogeneity. It suggests the application of epigenetic therapies to constrain the range of epigenetic states available to DIPG cells, as well as the use of decitabine in priming for immune-based therapies.

14.
Neuro Oncol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743009

RESUMO

Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.

15.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
16.
Neoplasia ; 37: 100880, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773516

RESUMO

Atypical teratoid rhabdoid tumors (AT/RT) are malignant central nervous system (CNS) tumors that occur mostly in young children and have historically carried a very poor prognosis. While recent clinical trial results show that this tumor is curable, outcomes are still poor compared to other central nervous system embryonal tumors. We here review prior AT/RT clinical trials and highlight promising pre-clinical results that may inform novel clinical approaches to this aggressive cancer.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Teratoma , Criança , Pré-Escolar , Humanos , Lactente , Tumor Rabdoide/patologia , Tumor Rabdoide/terapia , Proteína SMARCB1 , Teratoma/patologia , Teratoma/terapia
17.
Acta Neuropathol Commun ; 11(1): 38, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899402

RESUMO

Medulloblastoma (MB) develops through various genetic, epigenetic, and non-coding (nc) RNA-related mechanisms, but the roles played by ncRNAs, particularly circular RNAs (circRNAs), remain poorly defined. CircRNAs are increasingly recognized as stable non-coding RNA therapeutic targets in many cancers, but little is known about their function in MBs. To determine medulloblastoma subgroup-specific circRNAs, publicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify circRNAs that differentiate between MB subgroups. circ_63706 was identified as sonic hedgehog (SHH) group-specific, with its expression confirmed by RNA-FISH analysis in clinical tissue samples. The oncogenic function of circ_63706 was characterized in vitro and in vivo. Further, circ_63706-depleted cells were subjected to RNA-seq and lipid profiling to identify its molecular function. Finally, we mapped the circ_63706 secondary structure using an advanced random forest classification model and modeled a 3D structure to identify its interacting miRNA partner molecules. Circ_63706 regulates independently of the host coding gene pericentrin (PCNT), and its expression is specific to the SHH subgroup. circ_63706-deleted cells implanted into mice produced smaller tumors, and mice lived longer than parental cell implants. At the molecular level, circ_63706-deleted cells elevated total ceramide and oxidized lipids and reduced total triglyceride. Our study implicates a novel oncogenic circular RNA in the SHH medulloblastoma subgroup and establishes its molecular function and potential as a future therapeutic target.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , MicroRNAs , Criança , Humanos , Animais , Camundongos , RNA Circular/genética , Meduloblastoma/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Neoplasias Cerebelares/genética
18.
Neuro Oncol ; 25(5): 899-912, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36273330

RESUMO

BACKGROUND: Intensive chemotherapeutic regimens with craniospinal irradiation have greatly improved survival in medulloblastoma patients. However, survival markedly differs among molecular subgroups and their biomarkers are unknown. Through unbiased screening, we found Schlafen family member 11 (SLFN11), which is known to improve response to DNA damaging agents in various cancers, to be one of the top prognostic markers in medulloblastomas. Hence, we explored the expression and functions of SLFN11 in medulloblastoma. METHODS: SLFN11 expression for each subgroup was assessed by immunohistochemistry in 98 medulloblastoma patient samples and by analyzing transcriptomic databases. We genetically or epigenetically modulated SLFN11 expression in medulloblastoma cell lines and determined cytotoxic response to the DNA damaging agents cisplatin and topoisomerase I inhibitor SN-38 in vitro and in vivo. RESULTS: High SLFN11 expressing cases exhibited significantly longer survival than low expressing cases. SLFN11 was highly expressed in the WNT-activated subgroup and in a proportion of the SHH-activated subgroup. While WNT activation was not a direct cause of the high expression of SLFN11, a specific hypomethylation locus on the SLFN11 promoter was significantly correlated with high SLFN11 expression. Overexpression or deletion of SLFN11 made medulloblastoma cells sensitive and resistant to cisplatin and SN-38, respectively. Pharmacological upregulation of SLFN11 by the brain-penetrant histone deacetylase-inhibitor RG2833 markedly increased sensitivity to cisplatin and SN-38 in SLFN11-negative medulloblastoma cells. Intracranial xenograft studies also showed marked sensitivity to cisplatin by SLFN11-overexpression in medulloblastoma cells. CONCLUSIONS: High SLFN11 expression is one factor which renders favorable outcomes in WNT-activated and a subset of SHH-activated medulloblastoma possibly through enhancing response to cisplatin.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Cisplatino/farmacologia , Regulação para Cima , Irinotecano , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Epigênese Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo
19.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849558

RESUMO

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Meduloblastoma/genética , Fosforilação , Epigenômica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Neoplasias Cerebelares/genética , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
20.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001527

RESUMO

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa