Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 561(7724): 492-497, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209400

RESUMO

Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide that has a major role in sensory neurotransmission. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and a type 1 transmembrane domain protein, receptor activity-modifying protein 1 (RAMP1). Here we report the structure of the human CGRP receptor in complex with CGRP and the Gs-protein heterotrimer at 3.3 Å global resolution, determined by Volta phase-plate cryo-electron microscopy. The receptor activity-modifying protein transmembrane domain sits at the interface between transmembrane domains 3, 4 and 5 of CLR, and stabilizes CLR extracellular loop 2. RAMP1 makes only limited direct contact with CGRP, consistent with its function in allosteric modulation of CLR. Molecular dynamics simulations indicate that RAMP1 provides stability to the receptor complex, particularly in the positioning of the extracellular domain of CLR. This work provides insights into the control of G-protein-coupled receptor function.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/ultraestrutura , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Proteína 1 Modificadora da Atividade de Receptores/ultraestrutura , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/ultraestrutura , Sítios de Ligação , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Estabilidade Proteica , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Proteínas ras/química , Proteínas ras/metabolismo
2.
Nature ; 555(7694): 121-125, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466332

RESUMO

The class B glucagon-like peptide-1 (GLP-1) G protein-coupled receptor is a major target for the treatment of type 2 diabetes and obesity. Endogenous and mimetic GLP-1 peptides exhibit biased agonism-a difference in functional selectivity-that may provide improved therapeutic outcomes. Here we describe the structure of the human GLP-1 receptor in complex with the G protein-biased peptide exendin-P5 and a Gαs heterotrimer, determined at a global resolution of 3.3 Å. At the extracellular surface, the organization of extracellular loop 3 and proximal transmembrane segments differs between our exendin-P5-bound structure and previous GLP-1-bound GLP-1 receptor structure. At the intracellular face, there was a six-degree difference in the angle of the Gαs-α5 helix engagement between structures, which was propagated across the G protein heterotrimer. In addition, the structures differed in the rate and extent of conformational reorganization of the Gαs protein. Our structure provides insights into the molecular basis of biased agonism.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/ultraestrutura , Sítios de Ligação , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Humanos , Modelos Moleculares , Conformação Proteica
3.
Nature ; 546(7656): 118-123, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28437792

RESUMO

Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, such as osteoporosis, diabetes and obesity. Here we report the structure of a full-length class B receptor, the calcitonin receptor, in complex with peptide ligand and heterotrimeric Gαsßγ protein determined by Volta phase-plate single-particle cryo-electron microscopy. The peptide agonist engages the receptor by binding to an extended hydrophobic pocket facilitated by the large outward movement of the extracellular ends of transmembrane helices 6 and 7. This conformation is accompanied by a 60° kink in helix 6 and a large outward movement of the intracellular end of this helix, opening the bundle to accommodate interactions with the α5-helix of Gαs. Also observed is an extended intracellular helix 8 that contributes to both receptor stability and functional G-protein coupling via an interaction with the Gß subunit. This structure provides a new framework for understanding G-protein-coupled receptor function.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Receptores da Calcitonina/classificação , Receptores da Calcitonina/ultraestrutura , Sítios de Ligação , Membrana Celular/metabolismo , Sequência Conservada , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Conformação Proteica , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo
4.
Drug Discov Today Technol ; 38: 91-102, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34895645

RESUMO

Since the early 2010s, cryo-electron microscopy (cryo-EM) has evolved to a mainstream structural biology method in what has been dubbed the "resolution revolution". Pharma companies also began to use cryo-EM in drug discovery, evidenced by a growing number of industry publications. Hitherto limited in resolution, throughput and attainable molecular weight, cryo-EM is rapidly overcoming its main limitations for more widespread use through a new wave of technological advances. This review discusses how cryo-EM has already impacted drug discovery, and how the state-of-the-art is poised to further revolutionize its application to previously intractable proteins as well as new use cases.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Microscopia Crioeletrônica , Proteínas
5.
J Biol Chem ; 290(29): 18111-18123, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26060250

RESUMO

Adiponectin, a collagenous hormone secreted abundantly from adipocytes, possesses potent antidiabetic and anti-inflammatory properties. Mediated by the conserved Cys(39) located in the variable region of the N terminus, the trimeric (low molecular weight (LMW)) adiponectin subunit assembles into different higher order complexes, e.g. hexamers (middle molecular weight (MMW)) and 12-18-mers (high molecular weight (HMW)), the latter being mostly responsible for the insulin-sensitizing activity of adiponectin. The endoplasmic reticulum (ER) chaperone ERp44 retains adiponectin in the early secretory compartment and tightly controls the oxidative state of Cys(39) and the oligomerization of adiponectin. Using cellular and in vitro assays, we show that ERp44 specifically recognizes the LMW and MMW forms but not the HMW form. Our binding assays with short peptide mimetics of adiponectin suggest that ERp44 intercepts and converts the pool of fully oxidized LMW and MMW adiponectin, but not the HMW form, into reduced trimeric precursors. These ERp44-bound precursors in the cis-Golgi may be transported back to the ER and released to enhance the population of adiponectin intermediates with appropriate oxidative state for HMW assembly, thereby underpinning the process of ERp44 quality control.


Assuntos
Adiponectina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Adiponectina/química , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica
6.
Mol Microbiol ; 89(4): 702-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23796263

RESUMO

The Serratia entomophila antifeeding prophage Afp, forms a phage-tail-like particle that acts on the New Zealand grass grub, Costelytra zealandica with a 3-day LD50 of approximately 500 Afp particles per larva. Genes (afp1-18) encoding components of Afp were expressed and their products purified allowing morphological assessment of the products by transmission electron microscopy (TEM). Expression of afp1-15 resulted in the formation of a non-sheathed structure termed the tube-baseplate complex or TBC, composed of an irregular-length tube attached to a baseplate with associated tail fibres. Expression of afp1-16 produced mature, normal-length Afp particles, whereas coexpression of afp16 with afp1-15 in trans resulted in the formation of aberrant Afp particles of variable lengths. A C-terminally truncated Afp16 mutant resulted in a phenotype intermediate between mature Afp and TBC. The addition of purified Afp16 to Afp unravelled by acidic treatment resulted in the formation of shorter tubes when specimen pH was adjusted to 7 than those formed in the absence of Afp16. Analysis of TEM images of purified Afp16 revealed a hexameric ring-like structure similar to that formed by gp3 of phage T4 and gpU of phage λ. Our results suggest that Afp16 terminates tube elongation and is involved in sheath formation.


Assuntos
Prófagos/genética , Prófagos/metabolismo , Serratia/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura , Análise Mutacional de DNA , Teste de Complementação Genética , Microscopia Eletrônica de Transmissão , Deleção de Sequência , Vírion/genética
7.
Biopolymers ; 102(4): 313-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752567

RESUMO

The chemical synthesis is described of a polypeptide construct possessing both the variable and the collagen-like domain of adiponectin, which can be used as a model system for probing the influence of the variable domain on multimerization of this important circulating hormone. Using a collagen domain repeat peptide unit derived from native adiponectin or a glutamic acid analogue was ineffective due to noncollagenous conformational properties in both cases. However, employing a collagen model peptide and linking this to the variable domain thioester peptide using native chemical ligation proved effective. The 63 residue peptide was characterized by circular dichroism and mass spectrometry which demonstrated that a collagen-like triple-helical structure was preserved.


Assuntos
Adiponectina/química , Colágeno/química , Animais , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectrometria de Massas , Camundongos , Peptídeos/síntese química , Peptídeos/química , Estabilidade Proteica , Estrutura Terciária de Proteína , Temperatura
8.
Biomacromolecules ; 15(5): 1871-81, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24749984

RESUMO

The potential for protein tectons to be used in nanotechnology is increasingly recognized, but the repertoire of stable proteins that assemble into defined shapes in response to an environmental trigger is limited. Peroxiredoxins (Prxs) are a protein family that shows an amazing array of supramolecular assemblies, making them attractive tectons. Human Prx3 (hPrx3) forms toroidal oligomers characteristic of the Prx family, but no structure has been solved to date. Here we report the first 3-D structure of this protein, derived from single-particle analysis of TEM images, establishing a dodecameric structure. This result was supported by SAXS measurements. We also present the first detailed structure of a double toroidal Prx from a higher organism determined by SPA. Guided by these structures, variants of the protein were designed to facilitate controlled assembly of protein nanostructures through the association of the toroids. We observed an enhanced population of stacked toroids, as seen by TEM; nanocages and interlocked toroids were also visible. Low pH was successfully predicted to generate long ordered nanotubes. Control over the length of the tubes was gained by adding ammonium sulfate to the assembly buffer. These versatile assembly properties demonstrate the considerable potential of hPrx3 as a tecton for protein nanotechnology.


Assuntos
Nanotecnologia , Nanotubos/química , Peroxirredoxina III/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxirredução , Peroxirredoxina III/metabolismo , Peroxirredoxina III/ultraestrutura , Conformação Proteica
9.
J Biol Chem ; 287(45): 38178-89, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977243

RESUMO

Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Estrutura Terciária de Proteína , Streptococcus pyogenes/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética , Sítios de Ligação/genética , Carboidratos/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Modelos Moleculares , Mutação , Plasminogênio/química , Plasminogênio/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Streptococcus pyogenes/genética , Ressonância de Plasmônio de Superfície , Difração de Raios X
10.
Proc Natl Acad Sci U S A ; 107(32): 14070-4, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660775

RESUMO

The tripartite protein exotoxin secreted by Bacillus anthracis, a major contributor to its virulence and anthrax pathogenesis, consists of binary complexes of the protective antigen (PA) heptamer (PA63h), produced by proteolytic cleavage of PA, together with either lethal factor or edema factor. The mouse monoclonal anti-PA antibody 1G3 was previously shown to be a potent antidote that shares F(C) domain dependency with the human monoclonal antibody MDX-1303 currently under clinical development. Here we demonstrate that 1G3 instigates severe perturbation of the PA63h structure and creates a PA supercomplex as visualized by electron microscopy. This phenotype, produced by the unconventional mode of antibody action, highlights the feasibility for optimization of vaccines based on analogous structural modification of PA63h as an additional strategy for future remedies against anthrax.


Assuntos
Anticorpos Neutralizantes , Complexo Antígeno-Anticorpo/química , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Animais , Anticorpos Monoclonais , Humanos , Camundongos , Conformação Proteica , Multimerização Proteica
11.
Sci Rep ; 13(1): 1420, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697499

RESUMO

Membrane proteins are the largest group of therapeutic targets in a variety of disease areas and yet, they remain particularly difficult to investigate. We have developed a novel one-step approach for the incorporation of membrane proteins directly from cells into lipid Salipro nanoparticles. Here, with the pannexin1 channel as a case study, we demonstrate the applicability of this method for structure-function analysis using SPR and cryo-EM.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/metabolismo , Microscopia Crioeletrônica/métodos , Membrana Celular/metabolismo
12.
Nat Commun ; 13(1): 4087, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840580

RESUMO

Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Shaw , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Canais de Potássio Shaw/química , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Eletricidade Estática
13.
J Biol Chem ; 285(20): 15056-15064, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20228062

RESUMO

In a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized. We have developed an efficient in vitro protocol for studying the assembly of Rous sarcoma virus (RSV) CA that involves mild acidification and produces structures modeling the authentic viral capsid. These structures include regular spherical particles with T = 1 icosahedral symmetry, built from CA pentamers alone. These particles were subject to cryoelectron microscopy (cryo-EM) and image processing, and a pseudo-atomic model of the icosahedron was created by docking atomic structures of the constituent CA domains into the cryo-EM-derived three-dimensional density map. The N-terminal domain (NTD) of CA forms pentameric turrets, which decorate the surface of the icosahedron, while the C-terminal domain (CTD) of CA is positioned underneath, linking the pentamers. Biophysical analysis of the icosahedral particle preparation reveals that CA monomers and icosahedra are the only detectable species and that these exist in reversible equilibrium at pH 5. These same acidic conditions are known to promote formation of a RSV CA CTD dimer, present within the icosahedral particle, which facilitates capsid assembly. The results are consistent with a model in which RSV CA assembly is a nucleation-limited process driven by very weak protein-protein interactions.


Assuntos
Capsídeo/química , Prótons , Vírus do Sarcoma de Rous/química , Cromatografia em Gel , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
14.
Protein Expr Purif ; 80(1): 117-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21722735

RESUMO

N-terminal fusion tags that enhance translation initiation or protein solubility are often used to facilitate protein overexpression. As the optimal tag for a given target protein cannot be predicted a priori, valuable time can be lost in cloning and manipulating the corresponding gene to generate different fusion constructs for expression analysis. We have developed a cell-free strategy that consolidates these steps, enabling the utility of a panel of nine fusion-tags to be determined within one to two days. This approach exploits the fact that PCR-amplified DNA can be used as a template for cell-free protein synthesis. Overlap/extension PCR using the TEV protease site as the overlap region allows the fusion of different T7 promoter (T7p)-tag-TEV DNA fragments with a TEV-gene-T7 terminator (T7ter) fragment. For tag sequences where the TEV site is not compatible, a short C3G3 repeat (CGr) sequence can be used as the overlap region. The resulting T7p-tag-TEV-gene-T7ter constructs are then used as templates for PCR-directed cell-free protein synthesis to identify which tag-TEV-gene fusion protein produces the highest amount of soluble protein. We have successfully applied this approach to the overexpression of the Adiponectin hypervariable domain (AHD). Five of the nine N-terminal fusion tags tested enabled the synthesis of soluble recombinant protein. The best of these was the Peptidyl-prolylcis-trans isomerise B (PpiB) fusion tag which produces 1mg/ml amounts of soluble fusion protein. PpiB is an example of a new class of fusion tag known as the "stress-responsive proteins". Our results suggest that this cell-free fusion-tag expression screen facilitates the rapid identification of suitable fusion-tags that overcome issues such as poor expression and insolubility, often encountered using conventional approaches.


Assuntos
Adiponectina/genética , Clonagem Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes de Fusão/genética , Animais , Sequência de Bases , Endopeptidases/genética , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Histidina/genética , Camundongos , Dados de Sequência Molecular , Oligopeptídeos/genética , Estrutura Terciária de Proteína
15.
Virology ; 527: 159-168, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529564

RESUMO

Viral genomes are protected and organized by virally encoded packaging proteins. Heterologous production of these proteins often results in formation of particles resembling the authentic viral capsid or nucleocapsid, with cellular nucleic acids packaged in place of the viral genome. Quantifying the total protein and nucleic acid content of particle preparations is a recurrent biochemical problem. We describe a method for resolving this problem, developed when characterizing particles resembling the Menangle Virus nucleocapsid. The protein content was quantified using the biuret assay, which is largely independent of amino acid composition. Bound nucleic acids were quantified by determining the phosphorus content, using inductively coupled plasma mass spectrometry. Estimates for the amount of RNA packaged within the particles were consistent with the structurally-characterized packaging mechanism. For a bacterially-produced nucleoprotein complex, phosphorus usually provides a unique elemental marker of bound nucleic acids, hence this method of analysis should be routinely applicable.


Assuntos
Técnicas de Química Analítica/métodos , Proteínas do Nucleocapsídeo/análise , Paramyxoviridae/química , Reação de Biureto , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Proteínas do Nucleocapsídeo/isolamento & purificação , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/ultraestrutura , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Paramyxoviridae/ultraestrutura , Fósforo/análise , Fosforilação , Ligação Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
16.
Nat Commun ; 10(1): 4288, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537793

RESUMO

Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated ß-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bactérias/imunologia , Microscopia Crioeletrônica , Humanos , Lipossomos/metabolismo , Lisossomos/fisiologia , Macrófagos/imunologia , Microscopia de Força Atômica , Domínios Proteicos , Estrutura Secundária de Proteína
17.
Nat Commun ; 9(1): 3266, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111885

RESUMO

Complement component 9 (C9) functions as the pore-forming component of the Membrane Attack Complex (MAC). During MAC assembly, multiple copies of C9 are sequentially recruited to membrane associated C5b8 to form a pore. Here we determined the 2.2 Å crystal structure of monomeric murine C9 and the 3.9 Å resolution cryo EM structure of C9 in a polymeric assembly. Comparison with other MAC proteins reveals that the first transmembrane region (TMH1) in monomeric C9 is uniquely positioned and functions to inhibit its self-assembly in the absence of C5b8. We further show that following C9 recruitment to C5b8, a conformational change in TMH1 permits unidirectional and sequential binding of additional C9 monomers to the growing MAC. This mechanism of pore formation contrasts with related proteins, such as perforin and the cholesterol dependent cytolysins, where it is believed that pre-pore assembly occurs prior to the simultaneous release of the transmembrane regions.


Assuntos
Complemento C9/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Proteínas de Membrana/química , Domínios Proteicos , Animais , Complemento C9/genética , Complemento C9/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Proteínas do Sistema Complemento/química , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica
18.
Nat Commun ; 8: 16099, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665412

RESUMO

With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.


Assuntos
Microscopia Crioeletrônica/métodos , Hemoglobinas/ultraestrutura , Humanos , Estrutura Molecular
19.
Br J Pharmacol ; 174(23): 4478-4492, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28945274

RESUMO

BACKGROUND AND PURPOSE: Adiponectin, an adipokine possessing profound insulin-sensitizing and anti-inflammatory properties, is a potent biotherapeutic agent . The trimeric adiponectin subunit assembles into hexameric and functionally important higher molecular weight (HMW) forms, controlled by the endoplasmic reticulum protein 44 (ERp44). Obesity-induced ER stress decreases the HMW form in serum, contributing to the development of insulin resistance and Type 2 diabetes. In this study, a panel of synthetic peptides, designed to target ERp44-adiponectin interactions, were tested for their effects on circulating levels of HMW adiponectin. EXPERIMENTAL APPROACH: Peptides derived from the ERp44 binding region of adiponectin and immunoglobulin IgM were synthesized with or without a cell-penetrating sequence. Cultures of 3T3-L1 adipocytes were incubated with the peptides for assessing the assembly and secretion of HMW adiponectin. Mice given standard chow or a high-fat diet were treated acutely or chronically, with the peptides to investigate the therapeutic effects on insulin sensitivity and energy metabolism. RESULTS: The designed peptides interfered with ERp44-adiponectin interactions and modulated adiponectin assembly and release from adipocytes. In particular, IgM-derived peptides facilitated the release of endogenous adiponectin (especially the HMW form) from adipose tissue, enhanced its circulating level and the ratio of HMW-to-total-adiponectin in obese mice. Long-term treatment of mice fed with high-fat diet by IgM-derived peptides reduced the circulating lipid levels and improved insulin sensitivity. CONCLUSIONS AND IMPLICATIONS: Targeting ERp44-adiponectin interactions with short peptides represents an effective strategy to treat of obesity-related metabolic disorders, such as insulin resistance and Type 2 diabetes.


Assuntos
Adiponectina/metabolismo , Doenças Metabólicas/tratamento farmacológico , Obesidade/complicações , Peptídeos/farmacologia , Células 3T3-L1 , Animais , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Desenho de Fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina , Masculino , Proteínas de Membrana/metabolismo , Doenças Metabólicas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Peso Molecular , Peptídeos/síntese química
20.
mBio ; 8(3)2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487427

RESUMO

An unorthodox, surprising mechanism of resistance to the antibiotic linezolid was revealed by cryo-electron microscopy (cryo-EM) in the 70S ribosomes from a clinical isolate of Staphylococcus aureus This high-resolution structural information demonstrated that a single amino acid deletion in ribosomal protein uL3 confers linezolid resistance despite being located 24 Å away from the linezolid binding pocket in the peptidyl-transferase center. The mutation induces a cascade of allosteric structural rearrangements of the rRNA that ultimately results in the alteration of the antibiotic binding site.IMPORTANCE The growing burden on human health caused by various antibiotic resistance mutations now includes prevalent Staphylococcus aureus resistance to last-line antimicrobial drugs such as linezolid and daptomycin. Structure-informed drug modification represents a frontier with respect to designing advanced clinical therapies, but success in this strategy requires rapid, facile means to shed light on the structural basis for drug resistance (D. Brown, Nat Rev Drug Discov 14:821-832, 2015, https://doi.org/10.1038/nrd4675). Here, detailed structural information demonstrates that a common mechanism is at play in linezolid resistance and provides a step toward the redesign of oxazolidinone antibiotics, a strategy that could thwart known mechanisms of linezolid resistance.


Assuntos
Antibacterianos/metabolismo , Linezolida/metabolismo , Ribossomos/química , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Peptidil Transferases/metabolismo , Proteína Ribossômica L3 , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa