Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569627

RESUMO

During cardiac differentiation, numerous factors contribute to the development of the heart. Understanding the molecular mechanisms underlying cardiac development will help combat cardiovascular disorders, among the leading causes of morbidity and mortality worldwide. Among the main mechanisms, we indeed find Cripto. Cripto is found in both the syncytiotrophoblast of ampullary pregnancies and the inner cell mass along the primitive streak as the second epithelial-mesenchymal transformation event occurs to form the mesoderm and the developing myocardium. At the same time, it is now known that cardiac signaling pathways are intimately intertwined with the expression of myomiRNAs, including miR-1. This miR-1 is one of the muscle-specific miRs; aberrant expression of miR-1 plays an essential role in cardiac diseases. Given this scenario, our study aimed to evaluate the inverse correlation between Cripto and miR-1 during heart development. We used in vitro models of the heart, represented by embryoid bodies (EBs) and embryonic carcinoma cell lines derived from an embryo-derived teratocarcinoma in mice (P19 cells), respectively. First, through a luciferase assay, we demonstrated that Cripto is a target of miR-1. Following this result, we observed that as the days of differentiation increased, the Cripto gene expression decreased, while the level of miR-1 increased; furthermore, after silencing miR-1 in P19 cells, there was an increase in Cripto expression. Moreover, inducing damage with a cobra cardiotoxin (CTX) in post-differentiation cells, we noted a decreased miR-1 expression and increased Cripto. Finally, in mouse cardiac biopsies, we observed by monitoring gene expression the distribution of Cripto and miR-1 in the right and left ventricles. These results allowed us to detect an inverse correlation between miR-1 and Cripto that could represent a new pharmacological target for identifying new therapies.


Assuntos
Fator de Crescimento Epidérmico , MicroRNAs , Animais , Camundongos , Diferenciação Celular , Fator de Crescimento Epidérmico/metabolismo , Coração , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 165, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849014

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant epigenetic disorder with highly variable muscle involvement and disease progression. Ongoing clinical trials, aimed at counteracting muscle degeneration and disease progression in FSHD patients, increase the need for reliable biomarkers. Muscle magnetic resonance imaging (MRI) studies showed that the appearance of STIR-positive (STIR+) lesions in FSHD muscles represents an initial stage of muscle damage, preceding irreversible adipose changes. Our study aimed to investigate fibrosis, a parameter of muscle degeneration undetectable by MRI, in relation to disease activity and progression of FSHD muscles. We histologically evaluated collagen in FSHD1 patients' (STIR+ n = 27, STIR- n = 28) and healthy volunteers' (n = 12) muscles by picrosirius red staining. All patients (n = 55) performed muscle MRI before biopsy, 45 patients also after 1 year and 36 patients also after 2 years. Fat content (T1 signal) and oedema/inflammation (STIR signal) were evaluated at baseline and at 1- and 2-year MRI follow-up. STIR+ muscles showed significantly higher collagen compared to both STIR- (p = 0.001) and healthy muscles (p < 0.0001). STIR- muscles showed a higher collagen content compared to healthy muscles (p = 0.0194). FSHD muscles with a worsening in fatty infiltration during 1- (P = 0.007) and 2-year (P < 0.0001) MRI follow-up showed a collagen content of 3.6- and 3.7-fold higher compared to FSHD muscles with no sign of progression. Moreover, the fibrosis was significantly higher in STIR+ muscles who showed a worsening in fatty infiltration in a timeframe of 2 years compared to both STIR- (P = 0.0006) and STIR+ muscles with no sign of progression (P = 0.02). Fibrosis is a sign of muscle degeneration undetectable at MRI never deeply investigated in FSHD patients. Our data show that 23/27 of STIR+ and 12/28 STIR- muscles have a higher amount of collagen deposition compared to healthy muscles. Fibrosis is higher in FSHD muscles with a worsening in fatty infiltration thus suggesting that its evaluation with innovative non-invasive techniques could be a candidate prognostic biomarker for FSHD, to be used to stratify patients and to evaluate the efficacy of therapeutic treatments.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/patologia , Músculo Esquelético/patologia , Prognóstico , Estudos Retrospectivos , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Progressão da Doença , Colágeno
3.
Cell Death Dis ; 13(9): 793, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114172

RESUMO

Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients' muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , Distrofia Muscular Facioescapuloumeral , Diferenciação Celular/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia
5.
Sci Rep ; 9(1): 18091, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792344

RESUMO

Dystrophies are characterized by progressive skeletal muscle degeneration and weakness as consequence of their molecular abnormalities. Thus, new drugs for restoring skeletal muscle deterioration are critically needed. To identify new and alternative compounds with a functional role in skeletal muscle myogenesis, we screened a library of pharmacologically active compounds and selected the small molecule 6-bromoindirubin-3'-oxime (BIO) as an inhibitor of myoblast proliferation. Using C2C12 cells, we examined BIO's effect during myoblast proliferation and differentiation showing that BIO treatment promotes transition from cell proliferation to myogenic differentiation through the arrest of cell cycle. Here, we show that BIO is able to promote myogenic differentiation in damaged myotubes in-vitro by enriching the population of newly formed skeletal muscle myotubes. Moreover, in-vivo experiments in CTX-damaged TA muscle confirmed the pro-differentiation capability of BIO as shown by the increasing of the percentage of myofibers with centralized nuclei as well as by the increasing of myofibers number. Additionally, we have identified a strong correlation of miR-206 with BIO treatment both in-vitro and in-vivo: the enhanced expression of miR-206 was observed in-vitro in BIO-treated proliferating myoblasts, miR-206 restored expression was observed in a forced miR-206 silencing conditions antagomiR-mediated upon BIO treatment, and in-vivo in CTX-injured muscles miR-206 enhanced expression was observed upon BIO treatment. Taken together, our results highlight the capacity of BIO to act as a positive modulator of skeletal muscle differentiation in-vitro and in-vivo opening up a new perspective for novel therapeutic targets to correct skeletal muscle defects.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/farmacologia , MicroRNAs/genética , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Oximas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Mioblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Expert Opin Ther Targets ; 20(10): 1169-79, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27486901

RESUMO

OBJECTIVE: Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. RESEARCH DESIGN AND METHODS: We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. RESULTS: We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. CONCLUSIONS: These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/genética , Proteína HMGA1a/genética , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , RNA Interferente Pequeno/genética , Temozolomida
7.
J Clin Endocrinol Metab ; 100(1): E59-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25238203

RESUMO

CONTEXT: A previous micro-RNA expression profile of thyroid follicular adenomas identified miR-142 precursor among the miRNAs downregulated in the neoplastic tissues compared to normal thyroid gland. OBJECTIVE: The aim of this work has been to assess the expression of miR-142-3p in a large panel of follicular thyroid adenomas and carcinomas and evaluate its effect on thyroid cell proliferation and target expression. DESIGN: The expression of miR-142-3p was analyzed by qRT-PCR in thyroid follicular adenomas and carcinomas, compared to normal thyroids. MiR-142-3p expression was restored in WRO cells and the effects on cell proliferation and target expression were evaluated. RESULTS: Here we show that miR-142-3p is downregulated in FTAs, FTCs, and FVPTCs. MiR-142-3p was demonstrated to reduce the proliferation rate of WRO and FTC133 cells, supporting its tumor suppressor role in thyroid cancerogenesis. Moreover, this microRNA was able to downregulate the expression of ASH1L and MLL1, by direct and indirect mechanisms, respectively. Consistently, an inverse correlation between miR-142-3p expression and ASH1L and MLL1 proteins was found in thyroid follicular adenomas and carcinomas. ASH1L and MLL1, which belong to the Trithorax group (TrxG) proteins and are major regulators of Homeobox gene expression, maintain active target gene transcription by histone 3 lysine 4 methylation. Interestingly, we found that FTCs and FTC cell lines express tumor specific, shorter forms of the two proteins. The capability of miR-142-3p to modulate the levels of these tumor-associated forms and to reactivate thyroid-specific Hox gene expression, likely contributes to its tumor suppressive function. CONCLUSIONS: These data demonstrate that miR-142-3p downregulation has a role in thyroid tumorigenesis, by regulating ASH1L and MLL1.


Assuntos
Adenocarcinoma Folicular/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , MicroRNAs/genética , Proteína de Leucina Linfoide-Mieloide/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/genética , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa