Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Genomics ; 20(1): 488, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195958

RESUMO

BACKGROUND: With rising global temperature, understanding plants' adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. RESULTS: Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. CONCLUSION: The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies.


Assuntos
Resposta ao Choque Térmico/genética , MicroRNAs/genética , Triticum/genética , Triticum/fisiologia , Sequência de Bases , Redes Reguladoras de Genes , Anotação de Sequência Molecular
2.
Funct Integr Genomics ; 16(4): 429-39, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27142663

RESUMO

Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.


Assuntos
Ácidos Graxos Dessaturases/genética , Linho/genética , Genoma de Planta , Ácido alfa-Linolênico/genética , Ácidos Graxos Dessaturases/metabolismo , Linho/metabolismo , Genótipo , Polimorfismo de Nucleotídeo Único , Duplicações Segmentares Genômicas/genética , Ácido alfa-Linolênico/metabolismo
3.
Int J Mol Sci ; 17(12)2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27916797

RESUMO

Pseudogenes are paralogs generated from ancestral functional genes (parents) during genome evolution, which contain critical defects in their sequences, such as lacking a promoter, having a premature stop codon or frameshift mutations. Generally, pseudogenes are functionless, but recent evidence demonstrates that some of them have potential roles in regulation. The majority of pseudogenes are generated from functional progenitor genes either by gene duplication (duplicated pseudogenes) or retro-transposition (processed pseudogenes). Pseudogenes are primarily identified by comparison to their parent genes. Bioinformatics tools for pseudogene prediction have been developed, among which PseudoPipe, PSF and Shiu's pipeline are publicly available. We compared these three tools using the well-annotated Arabidopsis thaliana genome and its known 924 pseudogenes as a test data set. PseudoPipe and Shiu's pipeline identified ~80% of A. thaliana pseudogenes, of which 94% were shared, while PSF failed to generate adequate results. A need for improvement of the bioinformatics tools for pseudogene prediction accuracy in plant genomes was thus identified, with the ultimate goal of improving the quality of genome annotation in plants.


Assuntos
Biologia Computacional/métodos , Pseudogenes/genética , Duplicação Gênica/genética , Genoma de Planta/genética
4.
BMC Plant Biol ; 13: 78, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23647851

RESUMO

BACKGROUND: Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. RESULTS: Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (F(ST) = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r²) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. CONCLUSIONS: Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits.


Assuntos
Celulose/biossíntese , Evolução Molecular , Linho/genética , Variação Genética , Sementes/metabolismo , Seleção Genética , Cruzamento , Parede Celular/genética , Parede Celular/metabolismo , Mapeamento Cromossômico , DNA de Plantas/genética , Ácidos Graxos/biossíntese , Linho/classificação , Linho/metabolismo , Repetições de Microssatélites , Filogenia , Xilema/metabolismo
5.
Theor Appl Genet ; 125(8): 1783-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22890805

RESUMO

Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.


Assuntos
Linho/genética , Mapeamento Físico do Cromossomo/métodos , Mapeamento de Sequências Contíguas , Ligação Genética , Marcadores Genéticos
6.
Theor Appl Genet ; 125(4): 685-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22484296

RESUMO

Flax is an important oilseed crop in North America and is mostly grown as a fibre crop in Europe. As a self-pollinated diploid with a small estimated genome size of ~370 Mb, flax is well suited for fast progress in genomics. In the last few years, important genetic resources have been developed for this crop. Here, we describe the assessment and comparative analyses of 1,506 putative simple sequence repeats (SSRs) of which, 1,164 were derived from BAC-end sequences (BESs) and 342 from expressed sequence tags (ESTs). The SSRs were assessed on a panel of 16 flax accessions with 673 (58 %) and 145 (42 %) primer pairs being polymorphic in the BESs and ESTs, respectively. With 818 novel polymorphic SSR primer pairs reported in this study, the repertoire of available SSRs in flax has more than doubled from the combined total of 508 of all previous reports. Among nucleotide motifs, trinucleotides were the most abundant irrespective of the class, but dinucleotides were the most polymorphic. SSR length was also positively correlated with polymorphism. Two dinucleotide (AT/TA and AG/GA) and two trinucleotide (AAT/ATA/TAA and GAA/AGA/AAG) motifs and their iterations, different from those reported in many other crops, accounted for more than half of all the SSRs and were also more polymorphic (63.4 %) than the rest of the markers (42.7 %). This improved resource promises to be useful in genetic, quantitative trait loci (QTL) and association mapping as well as for anchoring the physical/genetic map with the whole genome shotgun reference sequence of flax.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Etiquetas de Sequências Expressas , Linho/genética , Técnicas Genéticas , Repetições de Microssatélites/genética , Sequência de Bases , Marcadores Genéticos , Genótipo , Motivos de Nucleotídeos/genética , Nucleotídeos/genética
7.
GM Crops Food ; 13(1): 65-85, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35400312

RESUMO

In this study, we present the bibliometric trends emerging from research outputs on consumer perception and preference for genetically modified (GM) foods and policy prescriptions for enabling the consumption using VOSviewer visualization software. Consumers' positive response is largely influenced by the decision of the governments to ban or approve the GM crops cultivation. Similarly, the public support increases when the potential benefits of the technology are well articulated, consumption increases with a price discount, people's trust on the government and belief in science increases with a positive influence by the media. Europe and the USA are the first region and country, respectively, in terms of the number of active institutions per research output, per-capita GDP publication and citations. We suggest research-, agri-food industries-, and society-oriented policies to be implemented by the stakeholders to ensure the safety of GM foods, encourage consumer-based studies, and increase public awareness toward these food products.


Assuntos
Alimentos Geneticamente Modificados , Bibliometria , Comportamento do Consumidor , Humanos , Percepção , Plantas Geneticamente Modificadas , Confiança
8.
BMC Genomics ; 12: 217, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21554714

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. RESULTS: The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. CONCLUSION: The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be valuable in saturating existing linkage maps and for anchoring physical and genetic maps. The physical map and paired-end reads from BAC clones will also serve as scaffolds to build and validate the whole genome shotgun assembly.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Linho/genética , Genoma de Planta/genética , Mapeamento Físico do Cromossomo/métodos , Análise de Sequência/métodos , Mapeamento de Sequências Contíguas , Repetições Minissatélites/genética , Anotação de Sequência Molecular , Especificidade da Espécie
9.
Mol Genet Genomics ; 283(3): 255-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20127492

RESUMO

Retrotransposons constitute a major proportion of the Triticeae genomes. Genome-scale studies have revealed their role in evolution affecting both genome structure and function and their potential for the development of novel markers. In this study, family members of an LTR copia retrotransposon which mediated the duplication of the gene encoding the high molecular weight glutenin subunit Bx7 in cultivar Glenlea were characterized. This novel element was named Sasanda_EU157184-1 (TREP3516). High density filters of the Glenlea hexaploid wheat BAC library were screened with a Sasanda long terminal repeat (LTR)-specific probe and approximately 1,075 positive clones representing an estimated copy number of 347 elements per haploid genome were identified. The 242 BAC clones with the strongest hybridization signal were selected. To maximize isolation of complete elements, this subset of clones was screened with a reverse transcriptase (RT) domain probe and DNA was isolated from the 133 clones that produced a strong hybridization signal. Left (5') and right (3') LTRs as well as the RT domains were PCR amplified and sequencing was carried out on the final subset of 121 clones. Evolutionary relationships were inferred from a data set consisting of 100 RT, 102 5' LTR and 100 3' LTR sequences representing 233, 451 and 495 informative sites for comparison, respectively. Neighbour-joining tree indicated that the element is at least 1.8 million years old and has evolved into a minimum of five sub-families. The insertion times of the 89 complete elements were estimated based on the divergence between their LTRs. Corroborating the inference from the RT domain, analysis of the LTR domains also indicated bursts of amplification from 2.6 million years ago (MYA) to now, except for one member dated to 4.6 +/- 0.7 MYA, which corresponds to the interval of divergence of Triticum and Aegilops (3 MYA) and divergence of Triticum and Rye (7 MYA). In 44 elements, the 5' and 3' LTRs were identical indicating recent transposition activity. The element can be used to develop retrotransposon-based markers such as sequence-specific amplified polymorphism, retrotransposon microsatellite amplified polymorphism and inter-retrotransposon amplified polymorphism, all of which are well suited for genotyping studies.


Assuntos
Sequências Repetidas Terminais , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Impressões Digitais de DNA , Primers do DNA , DNA de Plantas/química , DNA de Plantas/genética , Amplificação de Genes , Marcadores Genéticos , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Retroelementos/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequências Repetidas Terminais/genética
10.
Front Plant Sci ; 11: 592064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424887

RESUMO

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.

11.
Sci Rep ; 6: 39373, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004741

RESUMO

Understanding of plant adaptation to abiotic stresses has implications in plant breeding, especially in the context of climate change. MicroRNAs (miRNAs) and short interfering RNAs play a crucial role in gene regulation. Here, wheat plants were exposed to one of the following stresses: continuous light, heat or ultraviolet radiations over five consecutive days and leaf tissues from three biological replicates were harvested at 0, 1, 2, 3, 7 and 10 days after treatment (DAT). A total of 72 small RNA libraries were sequenced on the Illumina platform generating ~524 million reads corresponding to ~129 million distinct tags from which 232 conserved miRNAs were identified. The expression levels of 1, 2 and 79 miRNAs were affected by ultraviolet radiation, continuous light and heat, respectively. Approximately 55% of the differentially expressed miRNAs were downregulated at 0 and 1 DAT including miR398, miR528 and miR156 that control mRNAs involved in activation of signal transduction pathways and flowering. Other putative targets included histone variants and methyltransferases. These results suggest a temporal miRNA-guided post-transcriptional regulation that enables wheat to respond to abiotic stresses, particularly heat. Designing novel wheat breeding strategies such as regulatory gene-based marker assisted selection depends on accurate identification of stress induced miRNAs.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Triticum/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Temperatura Alta , Folhas de Planta/genética , RNA Mensageiro/genética , Raios Ultravioleta
12.
Trends Plant Sci ; 18(7): 367-76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23618952

RESUMO

Whole genome sequence assemblies have been generated for many plants. Annotation of transposable elements (TEs), which constitute the major proportion of genomes and play a significant role in epigenome alterations under stress, has not been given equal importance to that of genes. In this opinion article, we argue that the lack of focus dedicated to the fine-scale characterization of repeat fractions and the absence of consistent methods for their annotation impede our ability to critically understand the influence of TEs on the epigenome with implications in gene expression and non-Mendelian inheritance. Major structural changes occur over an evolutionary time scale. However, epigenetic regulation mediated by TEs can happen in a single generation, thus emphasizing the need for their standardized annotation.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Anotação de Sequência Molecular , Cruzamento , Epigênese Genética , Regulação da Expressão Gênica de Plantas
13.
Mol Genet Genomics ; 280(6): 467-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18830712

RESUMO

Wheat endosperm texture is controlled primarily by a locus (Ha), which comprises Gsp-1, Pina and Pinb genes encoding the so-called grain softness protein, puroindoline-a and puroindoline-b, respectively. Pina and Pinb were detected only on the D-genome of hexaploid wheat and its diploid progenitors while Gsp-1 was on all three homoeologous loci. Hexaploid cultivar Glenlea has a hard phenotype due to a null Pina genotype (D-genome) but the sequence organization is not reported. This study aimed at understanding the evolution of homoeologous Ha loci. Sequencing of three BAC clones from cv Glenlea was performed and sequence analyses delimited the Ha loci which spanned 3,925, 5,330 and 31,607 bp in the A-, B- and D-genomes, respectively. A solo LTR of Angela retroelement, downstream to Gsp-A1 and a fragment of Sabrina retroelement, downstream of Gsp-B1, were discovered. We propose that the insertion of these elements into the intergenic regions have driven the deletions of genomic segments harbouring Pina and Pinb genes in the A- and B-genomes of hexaploid wheat. Similarly, fragments of Romani and Vagabond retroelements were identified between truncated Pina and Pinb genes, indicating their role in the deletion of Pina in Glenlea, leading to its hard texture. Structural differences of the Ha locus region of the A-genome between two hexaploid wheat varieties namely Glenlea and Renan (CR626929), suggested the presence of more than one tetraploid ancestor in the origin of hexaploid wheat.


Assuntos
Evolução Molecular , Genes de Plantas , Genoma de Planta/genética , Retroelementos/genética , Sementes/genética , Triticum/genética , Cromossomos Artificiais Bacterianos , Modelos Genéticos , Mutagênese Insercional , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
14.
Theor Appl Genet ; 116(2): 283-96, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17985111

RESUMO

Sequencing of a BAC clone encompassing the Glu-B1 locus in Glenlea, revealed a 10.3 Kb segmental duplication including the Bx7 gene and flanking an LTR retroelement. To better understand the evolution of this locus, two collections of wheat were surveyed. The first consisted of 96 diploid and tetraploid species accessions while the second consisted of 316 Triticum aestivum cultivars and landraces from 41 countries. The genotypes were first characterized by SDS-PAGE and a total of 40 of the 316 T. aestivum accessions were found to display the overexpressed Bx7 phenotype (Bx7OE). Three lines from the 96 diploid/tetraploid collection also displayed the stronger intensity staining characteristic of the Bx7(OE) subunit. The relative amounts of the Bx7 subunit to total HMW-GS were quantified by RP-HPLC for all Bx7OE accessions and a number of checks. The entire collection was assessed for the presence of four DNA markers namely an 18 bp indel of the coding region of Bx7 variant alleles, a 43 bp indel of the 5'-region and the left and right junctions of the LTR retrotransposon borders and the duplicated segment. All 43 accessions found to have the Bx7OE subunit by SDS-PAGE and RP-HPLC produced the four diagnostic PCR amplicons. None of the lines without the Bx7OE had the LTR retroelement/duplication genomic structure. However, the 18 and 43 bp indel were found in accessions other than Bx7OE. These results indicate that the overexpression of the Bx7 HMW-GS is likely the result of a single event, i.e., a gene duplication at the Glu-B1 locus mediated by the insertion of a retroelement. Also, the 18 and 43 bp indels pre-date the duplication event. Allelic variants Bx7*, Bx7 with and without 43 bp insert and Bx7OE were found in both tetraploid and hexaploid collections and shared the same genomic organization. Though the possibility of introgression from T. aestivum to T. turgidum cannot be ruled out, the three structural genomic changes of the B-genome taken together support the hypothesis of multiple polyploidization events involving different tetraploid progenitors.


Assuntos
Evolução Molecular , Duplicação Gênica , Glutens/genética , Triticum/genética , Cromatografia Líquida de Alta Pressão , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Genótipo , Glutens/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa