Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cancer Ther ; 23(10): 1418-1430, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904222

RESUMO

KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteína SOS1 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Acetonitrilas , Piperazinas , Pirimidinas
2.
J Med Chem ; 67(6): 4936-4949, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477582

RESUMO

The H1047R mutation of PIK3CA is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3KαH1047R over PI3KαWT is crucial due to the role that PI3KαWT plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3KαH1047R-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage. Herein, we report the design and discovery of a series of pyridopyrimidinones that inhibit PI3KαH1047R with high selectivity over PI3KαWT, resulting in the discovery of compound 17. When dosed in the HCC1954 tumor model in mice, 17 provided tumor regressions and a clear pharmacodynamic response. X-ray cocrystal structures from several PI3Kα inhibitors were obtained, revealing three distinct binding modes within PI3KαH1047R including a previously reported cryptic pocket in the C-terminus of the kinase domain wherein we observe a ligand-induced interaction with Arg1047.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Antineoplásicos/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Mutação , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico
3.
J Med Chem ; 65(3): 1749-1766, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041419

RESUMO

The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of MTAP-deleted cancers. Here, we report the discovery of development candidate MRTX1719. MRTX1719 is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in MTAP-deleted cells compared to MTAP-wild-type cells. Daily oral administration of MRTX1719 to tumor xenograft-bearing mice demonstrated dose-dependent inhibition of PRMT5-dependent symmetric dimethylarginine protein modification in MTAP-deleted tumors that correlated with antitumor activity. A 4-(aminomethyl)phthalazin-1(2H)-one hit was identified through a fragment-based screen, followed by X-ray crystallography, to confirm binding to the PRMT5•MTA complex. Fragment growth supported by structural insights from X-ray crystallography coupled with optimization of pharmacokinetic properties aided the discovery of development candidate MRTX1719.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Ftalazinas/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Desoxiadenosinas/metabolismo , Feminino , Deleção de Genes , Humanos , Camundongos Nus , Ftalazinas/síntese química , Ftalazinas/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Tionucleosídeos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 65(14): 9678-9690, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833726

RESUMO

SOS1 is one of the major guanine nucleotide exchange factors that regulates the ability of KRAS to cycle through its "on" and "off" states. Disrupting the SOS1:KRASG12C protein-protein interaction (PPI) can increase the proportion of GDP-loaded KRASG12C, providing a strong mechanistic rationale for combining inhibitors of the SOS1:KRAS complex with inhibitors like MRTX849 that target GDP-loaded KRASG12C. In this report, we detail the design and discovery of MRTX0902─a potent, selective, brain-penetrant, and orally bioavailable SOS1 binder that disrupts the SOS1:KRASG12C PPI. Oral administration of MRTX0902 in combination with MRTX849 results in a significant increase in antitumor activity relative to that of either single agent, including tumor regressions in a subset of animals in the MIA PaCa-2 tumor mouse xenograft model.


Assuntos
Encéfalo , Proteínas Proto-Oncogênicas p21(ras) , Acetonitrilas , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Mutação , Piperazinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas , Proteína SOS1/metabolismo
5.
J Med Chem ; 65(4): 3123-3133, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889605

RESUMO

KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/química , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Med ; 28(10): 2171-2182, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36216931

RESUMO

Recent progress in targeting KRASG12C has provided both insight and inspiration for targeting alternative KRAS mutants. In this study, we evaluated the mechanism of action and anti-tumor efficacy of MRTX1133, a potent, selective and non-covalent KRASG12D inhibitor. MRTX1133 demonstrated a high-affinity interaction with GDP-loaded KRASG12D with KD and IC50 values of ~0.2 pM and <2 nM, respectively, and ~700-fold selectivity for binding to KRASG12D as compared to KRASWT. MRTX1133 also demonstrated potent inhibition of activated KRASG12D based on biochemical and co-crystal structural analyses. MRTX1133 inhibited ERK1/2 phosphorylation and cell viability in KRASG12D-mutant cell lines, with median IC50 values of ~5 nM, and demonstrated >1,000-fold selectivity compared to KRASWT cell lines. MRTX1133 exhibited dose-dependent inhibition of KRAS-mediated signal transduction and marked tumor regression (≥30%) in a subset of KRASG12D-mutant cell-line-derived and patient-derived xenograft models, including eight of 11 (73%) pancreatic ductal adenocarcinoma (PDAC) models. Pharmacological and CRISPR-based screens demonstrated that co-targeting KRASG12D with putative feedback or bypass pathways, including EGFR or PI3Kα, led to enhanced anti-tumor activity. Together, these data indicate the feasibility of selectively targeting KRAS mutants with non-covalent, high-affinity small molecules and illustrate the therapeutic susceptibility and broad dependence of KRASG12D mutation-positive tumors on mutant KRAS for tumor cell growth and survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Mutação/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
J Med Chem ; 64(15): 11527-11542, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34260228

RESUMO

The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound 56). The pharmacological characterization of these GPR139 agonists in vivo demonstrated GPR139-agonist-dependent modulation of habenula cell activity and revealed consistent in vivo efficacy to rescue social interaction deficits in the BALB/c mouse strain. The clinical GPR139 agonist TAK-041 is being explored as a novel drug to treat negative symptoms in SCZ.


Assuntos
Descoberta de Drogas , Proteínas do Tecido Nervoso/agonistas , Receptores Acoplados a Proteínas G/agonistas , Esquizofrenia/tratamento farmacológico , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estrutura Molecular , Proteínas do Tecido Nervoso/deficiência , Receptores Acoplados a Proteínas G/deficiência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa