Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(21): 8534-8540, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36260758

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are a class of nanoporous crystalline materials formed by the assembly of organic building blocks that are held together by a network of hydrogen-bonding interactions. Herein, we show that the dynamic and responsive nature of these hydrogen-bonding interactions endows HOFs with a host of unique physical properties that combine ultraflexibility, high thermal conductivities, and the ability to "self-heal". Our systematic atomistic simulations reveal that their unique mechanical properties arise from the ability of the hydrogen-bond arrays to absorb and dissipate energy during deformation. Moreover, we also show that these materials demonstrate relatively high thermal conductivities for porous crystals with low mass densities due to their extended periodic framework structure that is comprised of light atoms. Our results reveal that HOFs mark a new regime of material design combining multifunctional properties that make them ideal candidates for gas storage and separation, flexible electronics, and thermal switching applications.

2.
Nano Lett ; 22(7): 3071-3076, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35324214

RESUMO

The design of innovative porous crystals with high porosities and large surface areas has garnered a great deal of attention over the past few decades due to their remarkable potential for a variety of applications. However, heat dissipation is key to realizing their potential. We use systematic atomistic simulations to reveal that interpenetrated porous crystals formed from two-dimensional (2D) frameworks possess remarkable thermal conductivities at high porosities in comparison to their three-dimensional (3D) single framework and interpenetrated 3D framework counterparts. In contrast to conventional understanding, higher thermal conductivities are associated with lower atomic densities and higher porosities for porous crystals formed from interpenetrating 2D frameworks. We attribute this to lower phonon-phonon scattering and vibrational hardening from the supramolecular interactions that restrict atomic vibrational amplitudes, facilitating heat conduction. This marks a new regime of materials design combining ultralow mass densities and ultrahigh thermal conductivities in 2D interpenetrated porous crystals.

3.
J Chem Phys ; 155(12): 124703, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598592

RESUMO

The complete understanding of the mechanical and thermal responses to strain in hybrid organic-inorganic perovskites holds great potential for their proper functionalities in a range of applications, such as in photovoltaics, thermoelectrics, and flexible electronics. In this work, we conduct systematic atomistic simulations on methyl ammonium lead iodide, which is the prototypical hybrid inorganic-organic perovskite, to investigate the changes in their mechanical and thermal transport responses under uniaxial strain. We find that the mechanical response and the deformation mechanisms are highly dependent on the direction of the applied uniaxial strain with a characteristic ductile- or brittle-like failure accompanying uniaxial tension. Moreover, while most materials shrink in the two lateral directions when stretched, we find that the ductile behavior in hybrid perovskites can lead to a very unique mechanical response where negligible strain occurs along one lateral direction while the length contraction occurs in the other direction due to uniaxial tension. This anisotropy in the mechanical response is also shown to manifest in an anisotropic thermal response of the hybrid perovskite where the anisotropy in thermal conductivity increases by up to 30% compared to the unstrained case before plastic deformation occurs at higher strain levels. Along with the anisotropic responses of these physical properties, we find that uniaxial tension leads to ultralow thermal conductivities that are well below the value predicted with a minimum thermal conductivity model, which highlights the potential of strain engineering to tune the physical properties of hybrid organic-inorganic perovskites.

4.
ACS Omega ; 8(17): 15751-15758, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151534

RESUMO

The understanding of the fundamental relationships between chemical bonding and material properties, especially for carbon allotropes with diverse orbital hybridizations, is significant from both scientific and applicative standpoints. Here, we elucidate the influence of the intermolecular covalent bond configuration on the mechanical and thermal properties of polymerized fullerenes by performing systematic atomistic simulations on graphullerite, a newly synthesized crystalline polymer of C60 with a hexagonal lattice similar to that of graphene. Specifically, we show that the polymerization of C60 molecules into two-dimensional sheets (and three-dimensional layered structures) offers tunable control over their mechanical and thermal properties via the replacement of weak intermolecular van der Waals interactions between the fullerene molecules with strong sp3 covalent bonds. More specifically, we show that graphullerite possesses highly anisotropic mechanical as well as thermal properties resulting from the variation in the chemical bonding configuration along the different directions. In terms of their mechanical properties, we find that graphullerite can be remarkably ductile if strained along a certain direction with oriented double bonds connecting the fullerenes. Combined with their drastically reduced Young's modulus and bulk modulus as compared to graphite, these materials have the potential to be utilized in flexible electronics and advanced battery electrode applications. In terms of their thermal properties, we show that the bonding orientation dictates the intrinsic phonon scattering mechanisms, which ultimately dictates their anisotropic temperature-dependent thermal conductivities. Taken together, their flexible nature combined with their remarkably high thermal conductivities as polymeric materials positions them as ideal candidates for a plethora of applications such as for the next generation of battery electrodes.

5.
ACS Nano ; 16(2): 2843-2851, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143183

RESUMO

The prospect of combining two-dimensional materials in vertical stacks has created a new paradigm for materials scientists and engineers. Herein, we show that stacks of two-dimensional covalent organic frameworks are endowed with a host of unique physical properties that combine low densities, high thermal conductivities, and highly negative Poisson's ratios. Our systematic atomistic simulations demonstrate that the tunable mechanical and thermal properties arise from their singular layered architecture comprising strongly bonded light atoms and periodic laminar pores. For example, the negative Poisson's ratio arises from the weak van der Waals interactions between the two-dimensional layers along with the strong covalent bonds that act as hinges along the layers, which facilitate the twisting and swiveling motion of the phenyl rings relative to the tensile plane. The mechanical and thermal properties of two-dimensional covalent organic frameworks can be tailored through structural modularities such as control over the pore size and/or interlayer separation. We reveal that these materials mark a regime of materials design that combines low densities with high thermal conductivities arising from their nanoporous yet covalently interconnected structure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa