Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38747356

RESUMO

This study aimed to analyse the concentrations of mercury in fish samples available in the Algerian market and evaluate the potential health risks associated with their consumption. A total of 135 fish samples, representing the species Sardina pilchardus, Merluccius merluccius, Sparus aurata and Auxis rochie, were collected and analysed. Mercury levels were determined using thermal decomposition amalgamation Atomic Absorption Spectrophotometry. Health risks were evaluated by calculating hazard quotients. The overall mean concentration was 0.19 ± 0.11 mg/kg across all species. Individual species concentrations were recorded as 0.17 ± 0.08 mg/kg for Sardina pilchardus, 0.26 ± 0.19 mg/kg for Merluccius merluccius, 0.27 ± 0.18 mg/kg for Sparus aurata and 0.23 ± 0.13 mg/kg for Auxis rochei. Hazard quotients were below 1, indicating low health risk for fish consumers. Nevertheless, it is recommended to conduct periodic monitoring of heavy metal levels in fish, coupled with ongoing risk assessments, to ensure continued consumer protection.

2.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151817

RESUMO

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Zinco
3.
Neurochem Res ; 37(6): 1201-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22252726

RESUMO

Disruption of cholesterol metabolism has been hypothesized to contribute to dementia, possibly due to its role in maintaining membrane fluidity as well as the integrity of lipid rafts. Previously, we reported an apparent inverse relationship between membrane cholesterol levels and those of GM1, another lipid that can be found in rafts. This paper describes the observation that red blood cell (RBC) membranes isolated from blood drawn from children diagnosed with autism have on the average significantly less cholesterol and significantly more GM1 than RBC membranes isolated from blood obtained from control children. While cholesterol in the circulation does not cross the blood brain barrier, a generalized defect in its synthesis could affect its concentration in the central nervous system and that, coupled with a change in ganglioside expression, could contribute to development of the behaviors associated with autism.


Assuntos
Transtorno Autístico/sangue , Colesterol/metabolismo , Membrana Eritrocítica/química , Gangliosídeo G(M1)/metabolismo , Microdomínios da Membrana/metabolismo , Transtorno Autístico/metabolismo , Criança , Pré-Escolar , Colesterol/sangue , Feminino , Gangliosídeo G(M1)/sangue , Humanos , Masculino
4.
Sci Rep ; 11(1): 24150, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921178

RESUMO

Capillary endothelial cells of the human blood-brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5. When stably expressed in HEK293 cells, both Abcb4 and Abcb5 conferred resistance to P-gp substrates; however, Abcb5 poorly transported doxorubicin and mitoxantrone compared to zebrafish Abcb4. Additionally, Abcb5 did not transport the fluorescent P-gp probes BODIPY-ethylenediamine or LDS 751, while they were transported by Abcb4. High-throughput screening of 90 human P-gp substrates confirmed that Abcb4 has an overlapping substrate specificity profile with P-gp. In the brain vasculature, RNAscope probes for abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. The abcb4 probe also colocalized with claudin-5 in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, potentially indicating different functions. The data suggest that zebrafish Abcb4 functionally phenocopies P-gp and that the zebrafish may serve as a model to study the role of P-gp at the BBB.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico Ativo , Células HEK293 , Humanos , Especificidade de Órgãos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Ann Bot ; 104(1): 1-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19376782

RESUMO

BACKGROUND: Environmental factors greatly impact plant gene expression and concentrations of cellular metabolites such as sugars and amino acids. The changed metabolite concentrations affect the expression of many genes both transcriptionally and post-transcriptionally. RECENT PROGRESS: Sucrose acts as a signalling molecule in the control of translation of the S1 class basic leucine zipper transcription factor (bZIP) genes. In these genes the main bZIP open reading frames (ORFs) are preceded by upstream open reading frames (uORFs). The presence of uORFs generally inhibits translation of the following ORF but can also be instrumental in specific translational control. bZIP11, a member of the S1 class bZIP genes, harbours four uORFs of which uORF2 is required for translational control in response to sucrose concentrations. This uORF encodes the Sucrose Control peptide (SC-peptide), which is evolutionarily conserved among all S1 class bZIP genes in different plant species. Arabidopsis thaliana bZIP11 and related bZIP genes seem to be important regulators of metabolism. These proteins are targets of the Snf1-related protein kinase 1 (SnRK1) KIN10 and KIN11, which are responsive to energy deprivation as well as to various stresses. In response to energy deprivation, ribosomal biogenesis is repressed to preserve cellular function and maintenance. Other key regulators of ribosomal biogenesis such as the protein kinase Target of Rapamycin (TOR) are tightly regulated in response to stress. CONCLUSIONS: Plants use translational control of gene expression to optimize growth and development in response to stress as well as to energy deprivation. This Botanical Briefing discusses the role of sucrose signalling in the translational control of bZIP11 and the regulation of ribosomal biogenesis in response to metabolic changes and stress conditions.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Sacarose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/farmacologia
6.
Cancer Res ; 76(6): 1560-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719540

RESUMO

Recombinant immunotoxins (RIT) have been highly successful in cancer therapy due, in part, to the high cancer-specific expression of cell surface antigens such as mesothelin, which is overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancers, but is limited in normal cells. RG7787 is a clinically optimized RIT consisting of a humanized anti-mesothelin Fab fused to domain III of Pseudomonas exotoxin A, in which immunogenic B-cell epitopes are silenced. To enhance the therapeutic efficacy of RITs, we conducted a kinome RNAi sensitization screen, which identified discoidin domain receptor 1 (DDR1), a collagen-activated tyrosine kinase, as a potential target. The collagen/DDR1 axis is implicated in tumor-stromal interactions and potentially affects tumor response to therapy. Therefore, we investigated the effects of DDR1 on RIT. Knockdown of DDR1 by siRNA or treatment with inhibitor, 7rh, greatly enhanced the cytotoxic activity of RG7787 in several cancer cell lines. Investigation into the mechanism of action showed DDR1 silencing was associated with decreased expression of several ribosomal proteins and enhanced inhibition of protein synthesis. Conversely, induction of DDR1 expression or collagen-stimulated DDR1 activity protected cancer cells from RG7787 killing. Moreover, the combination of RG7787 and DDR1 inhibitor caused greater shrinkage of tumor xenografts than either agent alone. These data demonstrate that DDR1 is a key modulator of RIT activity and represents a novel therapeutic strategy to improve targeting of mesothelin-expressing cancers.


Assuntos
Antineoplásicos/farmacologia , Proteínas Ligadas por GPI/metabolismo , Imunotoxinas/farmacologia , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , ADP Ribose Transferases/farmacologia , Animais , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1 , Exotoxinas/farmacologia , Inativação Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Mesotelina , Camundongos , Camundongos Nus , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
7.
Brain Imaging Behav ; 10(4): 1231-1242, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26660104

RESUMO

Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation. However, it remains undetermined how these differences translate to human H63D carriers in regards to white matter (WM) integrity. To this endeavor, MRI transverse relaxation rate (R2) parametrics were employed to test the hypothesis that WM alterations are present in H63D human carriers and are recapitulated in the H67D mice. H63D carriers exhibit widespread reductions in brain R2 compared to non-carriers within white matter association fibers in the brain. Similar R2 decreases within white matter tracts were observed in the H67D mouse brain. Additionally, an exacerbation of age-related R2 decrease is found in the H67D animal model in white matter regions of interest. The decrease in R2 within white matter tracts of both species is speculated to be multifaceted. The R2 changes are hypothesized to be due to alterations in axonal biochemical tissue composition. The R2 changes observed in both the human-H63D and mouse-H67D data suggest that modified white matter myelination is occurring in subjects with HFE mutations, potentially increasing vulnerability to neurodegenerative disorders.


Assuntos
Proteína da Hemocromatose/genética , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Idoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos Transversais , Interpretação Estatística de Dados , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Técnicas de Genotipagem , Heterozigoto , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Entrevista Psiquiátrica Padronizada , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes Neuropsicológicos , Substância Branca/fisiopatologia
8.
Front Pharmacol ; 5: 165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071582

RESUMO

Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.

9.
PLoS One ; 9(2): e88724, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533143

RESUMO

Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.


Assuntos
Colesterol/metabolismo , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Membrana/genética , Neuroblastoma/genética , Alelos , Androstenos/química , Azetidinas/química , Linhagem Celular Tumoral , Sobrevivência Celular , Ezetimiba , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína da Hemocromatose , Humanos , Ferro/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fatores de Risco , Sinvastatina/química , Esfingolipídeos/metabolismo
10.
Neurobiol Aging ; 35(6): 1511.e1-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24439478

RESUMO

The H63D variant of the hemochromatosis (HFE) gene, when expressed in carriers of the apolipoprotein E4 allele, is implicated as a risk factor for earlier onset of Alzheimer's disease (AD). We tested the hypothesis that like expression of apolipoprotein E4, expression of H63D-HFE disrupts cholesterol metabolism contributing to an increase in neurodegeneration and memory deficits. Analysis of SH-SY5Y human neuroblastoma cells transfected to stably express either wild type- (WT) or H63D-HFE indicated about a 50% reduction in cholesterol content in cells expressing H63D-HFE. This was accompanied by a significant decrease in expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase, and a significant increase in expression of cholesterol 24-hydroxylase. Consistent with these studies, H67D-HFE (orthologous to human H63D-HFE) knock-in mice, showed a greater age dependent decline in brain cholesterol than WT-HFE animals and changes in expression of proteins regulating cholesterol metabolism. Brains of aged H67D-HFE mice also exhibited a significant decrease in expression of synapse proteins and a significant increase in caspase-3 expression relative to WT-HFE controls. H67D-HFE mice also had a greater reduction in brain volume and poorer recognition and spatial memory than WT-HFE mice, symptoms associated with AD. These results indicate that the alterations in cholesterol metabolism associated with expression of H63D-HFE may contribute to the development of AD.


Assuntos
Colesterol/metabolismo , Hemocromatose/genética , Proteínas de Membrana/genética , Transtornos da Memória/genética , Mutação/genética , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Apolipoproteína E4/genética , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Colesterol 24-Hidroxilase , Expressão Gênica , Hemocromatose/metabolismo , Proteína da Hemocromatose , Heterozigoto , Antígenos de Histocompatibilidade Classe I , Humanos , Memória , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Reconhecimento Psicológico , Fatores de Risco , Esteroide Hidroxilases/metabolismo , Células Tumorais Cultivadas
11.
Avicenna J Phytomed ; 2(4): 212-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25050251

RESUMO

OBJECTIVE(S): Diabetes mellitus is a public health problem and one of the five leading causes of death globally. In the present study, the effect of Metformin with natural honey was investigated on glycemia in the Streptozotocin-induced diabetic rats. MATERIALS AND METHODS: Thirty Wistar male rats were randomly divided into six groups including C: non diabetic rats received distilled water, CH: non diabetic rats received honey, CD: diabetic rats administered with distilled water, DM: Metformin treated diabetic rats, DH: honey treated diabetic rats, and DMH: diabetic rats treated with a combination of Metformin and natural honey. Diabetes was induced by a single dose of Streptozotocin (65 mg/kg; i.p.). The animals were treated by oral gavage once daily for four weeks. At the end of the treatment period, the animals were sacrificed and their blood samples collected. Amount of glucose, triglyceride (TG), total cholesterol (TC), HDL cholesterol, LDL cholesterol, VLDL cholesterol, total bilirubin, and albumin were determined in serum. RESULTS: Group CD: showed hyperglycemia (252.2±4.1 mg/dl), while level of blood glucose was significantly (p<0.01) reduced in groups DH (124.2±2.7 mg/dl), DM (108.0±3.4 mg/dl), and DMH (115.4±2.1 mg/dl). Honey in combination with Metformin significantly (p<0.01) reduced level of bilirubin but Metformin alone did not reduce bilirubin. Honey alone and in combination with Metformin also significantly reduced triglycerides, total cholesterol, LDL, VLDL and increased HDL, but Metformin did not reduced triglycerides and increased HDL. CONCLUSION: The results of the present study demonstrated that consuming natural honey with Metformin improves glycemic control and is more useful than consuming Metformin alone. The higher therapeutic effect of Ilam honey on lipid abnormalities than Tualang honey was also evident.

12.
Plant Mol Biol ; 69(1-2): 107-19, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18841482

RESUMO

Members of the Arabidopsis group C/S1 basic leucine zipper (bZIP) transcription factor (TF) network are proposed to implement transcriptional reprogramming of plant growth in response to energy deprivation and environmental stresses. The four group C and five group S1 members form specific heterodimers and are, therefore, considered to cooperate functionally. For example, the interplay of C/S1 bZIP TFs in regulating seed maturation genes was analyzed by expression studies and target gene regulation in both protoplasts and transgenic plants. The abundance of the heterodimerization partners significantly affects target gene transcription. Therefore, a detailed analysis of the developmental and stress related expression patterns was performed by comparing promoter: GUS and transcription data. The idea that the C/S1 network plays a role in the allocation of nutrients is supported by the defined and partially overlapping expression patterns in sink leaves, seeds and anthers. Accordingly, metabolic signals strongly affect bZIP expression on the transcriptional and/or post-transcriptional level. Sucrose induced repression of translation (SIRT) was demonstrated for all group S1 bZIPs. In particular, transcription of group S1 genes strongly responds to various abiotic stresses, such as salt (AtbZIP1) or cold (AtbZIP44). In summary, heterodimerization and expression data provide a basic framework to further determine the functional impact of the C/S1 network in regulating the plant energy balance and nutrient allocation.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Dimerização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa