Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 148(1-2): 259-72, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22225612

RESUMO

Identification of the factors critical to the tumor-initiating cell (TIC) state may open new avenues in cancer therapy. Here we show that the metabolic enzyme glycine decarboxylase (GLDC) is critical for TICs in non-small cell lung cancer (NSCLC). TICs from primary NSCLC tumors express high levels of the oncogenic stem cell factor LIN28B and GLDC, which are both required for TIC growth and tumorigenesis. Overexpression of GLDC and other glycine/serine enzymes, but not catalytically inactive GLDC, promotes cellular transformation and tumorigenesis. We found that GLDC induces dramatic changes in glycolysis and glycine/serine metabolism, leading to changes in pyrimidine metabolism to regulate cancer cell proliferation. In the clinic, aberrant activation of GLDC correlates with poorer survival in lung cancer patients, and aberrant GLDC expression is observed in multiple cancer types. This link between glycine metabolism and tumorigenesis may provide novel targets for advancing anticancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Transformação Celular Neoplásica , Glicina Desidrogenase (Descarboxilante)/metabolismo , Neoplasias Pulmonares/metabolismo , Sequência de Aminoácidos , Antígenos CD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas Fetais/metabolismo , Glicina/metabolismo , Humanos , Dados de Sequência Molecular , Neoplasias/enzimologia , Neoplasias/genética , Proteínas de Ligação a RNA , Alinhamento de Sequência , Serina/metabolismo , Thermus thermophilus/enzimologia , Transplante Heterólogo
2.
J Sci Food Agric ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299734

RESUMO

Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.

3.
J Sci Food Agric ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855927

RESUMO

BACKGROUND: The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS: After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION: The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.

4.
J Food Sci Technol ; 61(2): 366-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196717

RESUMO

The present study aims to evaluate the quality of chemical, sensory properties and antioxidant potential of mulberry wine using selenium-enriched yeasts employing eight different methods (MW1-MW8). The selenium-enriched yeast significantly (p < 0.05) increased phytochemical profiles, flavor, quality and antioxidant capacity. The most effective method for raising the selenium level of mulberry wine was using L-seMC (MW5). Mulberry wine color was attributed to the anthocyanins and phytochemical composition with selenium content. DPPH and ABTS radical scavenging activity varied with change in treatment methods suggesting their impact on antioxidant activity. Total selenium content on L-SeMC supplementation proved a significant correlation between selenium content with total anthocyanin content, total polyphenol content and flavonoid content. Sensory analysis by electronic nose exhibited MW2 with high response value in the W2S sensor showing high alcohol concentration. GC-MS analysis showed the presence of 57 volatile aromatic compounds comprehended by esters and alcohol (isoamyl alcohol, 2-methylbutanol, 2,3-butanediol, and phenethyl alcohol). Principal component analysis affirms the response values for four categorical score values with reliability and consistency for all the parameters, significantly. Thus, the workflow demonstrates a simpler, cost-effective traditional methodology for rationalized outcomes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05847-4.

5.
J Food Sci Technol ; 61(3): 429-443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327860

RESUMO

Food matrices contain bioactive compounds that have health benefits beyond nutritional value. The bulk of bioactive chemicals are still present in agro-industrial by-products as food matrices. Throughout the food production chain, there is a lot of agro-industrial waste that, if not managed effectively, could harm the environment, company, and how nutritiously and adequately people eat. It's important to establish processes that maximise the use of agro-industrial by-products, such as biological technologies that improve the extraction and acquisition of bioactive compounds for the food and pharmaceutical industries. As opposed to nonbiological processes, biological procedures provide high-quality, bioactive extracts with minimum toxicity and environmental impact. Fermentation and enzymatic treatment are biological processes for obtaining bioactive compounds from agro-industrial waste. In this context, this article summarises the principal bioactive components in agro-industrial byproducts and the biological methods employed to extract them. In this review efficient utilization of bioactive compounds from agro-industrial waste more effectively in food and pharmaceutical industries has been described.

6.
Amino Acids ; 55(11): 1621-1640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749439

RESUMO

The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1ß) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.


Assuntos
Anti-Hipertensivos , Camelus , Camundongos , Animais , Anti-Hipertensivos/farmacologia , Camelus/metabolismo , Hipoglicemiantes , Linhagem Celular , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fermentação
7.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405373

RESUMO

With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and ß-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.

8.
Acta Virol ; 67(1): 13-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950882

RESUMO

High-throughput RNA sequencing (RNA-seq) analysis of samples from Mallotus japonicus, a traditional medicinal plant, yielded two novel RNA viruses tentatively named Mallotus japonicus virus A (MjVA) and Mallotus japonicus virus B (MjVB). The MjVA and MjVB genomes encode proteins showing amino acid sequence similarities to those of poleroviruses (the genus Polerovirus, the family Solemoviridae) and amalgaviruses (the genus Amalgavirus, the family Amalgaviridae), respectively. The MjVA genome contains seven highly overlapping open reading frames, which are translated to seven proteins through various translational mechanisms, including -1 programmed ribosomal frameshifting (PRF) at the slippery motif GGGAAAC, non-AUG translational initiation, and stop codon readthrough. The MjVB genome encodes two proteins; one of which is translated by +1 PRF mechanism at the slippery motif UUUCGN. The abundance analysis of virus-derived RNA fragments revealed that MjVA is highly concentrated in plant parts with well-developed phloem tissues as previously demonstrated in other poleroviruses, which are transmitted by phloem feeders, such as aphids. MjVB, an amalgavirus generally transmitted by seeds, is distributed in all samples at low concentrations. Thus, this study demonstrates the effectiveness and usefulness of RNA-seq analysis of plant samples for the identification of novel RNA viruses and analysis of their tissue distribution. Keywords: Polerovirus; Amalgavirus; Mallotus japonicus; RNA virus; viral genome; programmed ribosomal frameshifting.


Assuntos
Luteoviridae , Mallotus (Planta) , Vírus de RNA , Luteoviridae/genética , Mallotus (Planta)/genética , Filogenia , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Genoma Viral , Doenças das Plantas
9.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834695

RESUMO

Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.


Assuntos
Anti-Infecciosos , Quempferóis , Quempferóis/farmacologia , Staphylococcus aureus , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Extratos Vegetais/farmacologia , Resistência a Múltiplos Medicamentos , Testes de Sensibilidade Microbiana
10.
Physiol Mol Biol Plants ; 29(6): 871-887, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520805

RESUMO

Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01327-3.

11.
Curr Genet ; 68(5-6): 565-579, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927361

RESUMO

Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.


Assuntos
Arthrobacter , Metagenoma , Lagos/microbiologia , Detergentes , Arthrobacter/genética , Lipase/genética , Peptídeo Hidrolases/genética , Amilases/genética
12.
Curr Genet ; 68(3-4): 375-391, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35532798

RESUMO

The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.


Assuntos
Lipase , Pseudomonas , Temperatura Baixa , Genômica , Lipase/química , Lipase/genética , Lipase/metabolismo , Pseudomonas/genética , Siquim , Neve , Solo , Especificidade por Substrato
13.
Nat Methods ; 16(5): 446, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30992571

RESUMO

In the originally published Supplementary Information for this paper, the files presented as Supplementary Tables 3, 4, and 7 were duplicates of Supplementary Tables 5, 6, and 9, respectively. All Supplementary Table files are now correct online.

14.
Nat Methods ; 16(4): 295-298, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923379

RESUMO

We report a computational approach (implemented in MS-DIAL 3.0; http://prime.psc.riken.jp/) for metabolite structure characterization using fully 13C-labeled and non-labeled plants and LC-MS/MS. Our approach facilitates carbon number determination and metabolite classification for unknown molecules. Applying our method to 31 tissues from 12 plant species, we assigned 1,092 structures and 344 formulae to 3,604 carbon-determined metabolite ions, 69 of which were found to represent structures currently not listed in metabolome databases.


Assuntos
Biologia Computacional/métodos , Genes de Plantas , Metaboloma , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isótopos de Carbono , Cromatografia Líquida , Bases de Dados Factuais , Marcação por Isótopo , Espectrometria de Massas , Metabolômica , Folhas de Planta , Raízes de Plantas , Caules de Planta , Software , Especificidade da Espécie , Espectrometria de Massas em Tandem
15.
Appl Microbiol Biotechnol ; 106(9-10): 3599-3610, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35590081

RESUMO

A novel ß-galactosidase gene (galM) was cloned from an aquatic habitat metagenome. The analysis of its translated sequence (GalM) revealed its phylogenetic closeness towards Verrucomicrobia sp. The sequence comparison and homology structure analysis designated it a member of GH42 family. The three-dimensional homology model of GalM depicted a typical (ß/α)8 TIM-barrel containing the catalytic core. The gene (galM) was expressed in a heterologous host, Escherichia coli, and the purified protein (GalM) was subjected to biochemical characterization. It displayed ß-galactosidase activity in a wide range of pH (2.0 to 9.0) and temperature (4 to 60 °C). The heat exposed protein showed considerable stability at 40 and 50 °C, with the half-life of about 100 h and 35 h, respectively. The presence of Na, Mg, K, Ca, and Mn metals was favorable to the catalytic efficiency of GalM, which is a desirable catalytic feature, as these metals exist in milk. It showed remarkable tolerance of glucose and galactose in the reaction. Furthermore, GalM discerned transglycosylation activity that is useful in galacto-oligosaccharides' production. These biochemical properties specify the suitability of this biocatalyst for milk and whey processing applications. KEY POINTS: • A novel ß-galactosidase gene was identified and characterized from an aquatic habitat. • It was active in extreme acidic to mild alkaline pH and at cold to moderate temperatures. • The ß-galactosidase was capable to hydrolyze lactose in milk and whey.


Assuntos
Leite , Soro do Leite , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Leite/metabolismo , Oligossacarídeos/metabolismo , Filogenia , Soro do Leite/metabolismo , beta-Galactosidase/metabolismo
16.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897793

RESUMO

Limbus-derived stromal/mesenchymal stem cells (LMSCs) are vital for corneal homeostasis and wound healing. However, despite multiple pre-clinical and clinical studies reporting the potency of LMSCs in avoiding inflammation and scarring during corneal wound healing, the molecular basis for the ability of LMSCs remains unknown. This study aimed to uncover the factors and pathways involved in LMSC-mediated corneal wound healing by employing RNA-Sequencing (RNA-Seq) in human LMSCs for the first time. We characterized the cultured LMSCs at the stages of initiation (LMSC-P0) and pure population (LMSC-P3) and subjected them to RNA-Seq to identify the differentially expressed genes (DEGs) in comparison to native limbus and cornea, and scleral tissues. Of the 28,000 genes detected, 7800 DEGs were subjected to pathway-specific enrichment Gene Ontology (GO) analysis. These DEGs were involved in Wnt, TGF-ß signaling pathways, and 16 other biological processes, including apoptosis, cell motility, tissue remodeling, and stem cell maintenance, etc. Two hundred fifty-four genes were related to wound healing pathways. COL5A1 (11.81 ± 0.48) and TIMP1 (20.44 ± 0.94) genes were exclusively up-regulated in LMSC-P3. Our findings provide new insights involved in LMSC-mediated corneal wound healing.


Assuntos
Lesões da Córnea , Células-Tronco Mesenquimais , Córnea/metabolismo , Lesões da Córnea/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Cicatrização/genética
17.
J Environ Manage ; 307: 114569, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091250

RESUMO

Growing resistance among microbial communities against antimicrobial compounds, especially antibiotics, is a significant threat to living beings. With increasing antibiotic resistance in human pathogens, it is necessary to examine the habitats having community interests. In the present study, a metagenomic approach has been employed to understand the causes, dissemination, and effects of antibiotic, metal, and biocide resistomes on the microbial ecology of three hot springs, Borong, Lingdem, and Yumthang, located at different altitudes of the Sikkim Himalaya. The taxonomic assessment of these hot springs depicted the predominance of mesophilic organisms, mainly belonging to the phylum Proteobacteria. The enriched microbial metabolism assosiated with energy, cellular processes, adaptation to diverse environments, and defence were deciphered in the metagenomes. The genes representing resistance to semisynthetic antibiotics, e.g., aminoglycosides, fluoroquinolones, fosfomycin, vancomycin, trimethoprim, tetracycline, streptomycin, beta-lactams, multidrug resistance, and biocides such as triclosan, hydrogen peroxide, acriflavin, were abundantly present. Various genes attributing resistance to copper, arsenic, iron, and mercury in metal resistome were detected. Relative abundance, correlation, and genome mapping of metagenome-assembled genomes indicated the co-evolution of antibiotic and metal resistance in predicted novel species belonging to Vogesella, Thiobacillus, and Tepidimona genera. The metagenomic findings were further validated with isolation of microbial cultures, exhibiting resistance against antibiotics and heavy metals, from the hot spring water samples. The study furthers our understanding about the molecular basis of co-resistomes in the ceological niches and their possible impact on the environment.


Assuntos
Desinfetantes , Fontes Termais , Metais Pesados , Antibacterianos , Humanos , Metagenômica
18.
J Food Sci Technol ; 59(4): 1353-1361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250060

RESUMO

Black soybean was fermented with four different potential Bacillus spp., including Bacillus licheniformis K1G, Bacillus subtilis K2B, Bacillus amyloliquefaciens K2G and Bacillus subtilis K2M, isolated from kinema, a traditionally fermented soybean product of Sikkim. Enhancement of antioxidant activity was observed with DPPH radical scavenging activity, reducing power potential and total antioxidant activity in methanolic as well as water extracts. Overall antioxidant activities were found to be higher in fermented black soybean in comparison to yellow soybean, showing its potential for production of kinema. Further, black soybean fermented using different starter was subjected to gastrointestinal digestion using pepsin and pancreatin. Upon gastrointestinal digestion of fermented black soybean changes in antioxidant activity was observed that was found to be reliant on the species and strains applied for fermentation as starter culture. Among different starters used for fermentation, black soybean fermented using B. subtilis K2M had higher DPPH radical scavenging and reducing power activity on gastrointestinal digestion. This study concludes that B. subtilis K2M can be applied for fermentation of black soybean for production of kinema as well as bioactive protein hydrolysates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05144-y.

19.
Nat Prod Rep ; 38(10): 1729-1759, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668509

RESUMO

Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.


Assuntos
Metabolômica/métodos , Compostos Fitoquímicos/metabolismo , Plantas/metabolismo , Inteligência Artificial , Genoma de Planta , Informática , Aprendizado de Máquina , Espectrometria de Massas , Família Multigênica , Plantas/química
20.
Cytogenet Genome Res ; 161(8-9): 397-405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34753128

RESUMO

Down Syndrome (DS) caused by trisomy 21 results in various congenital and developmental complications in children. It is crucial to cytogenetically diagnose the DS cases early for their proper health management and to reduce the risk of further DS childbirths in mothers. In this study, we performed a cytogenetic analysis of 436 suspected DS cases using karyotyping and fluorescent in situ hybridization. We detected free trisomies (95.3%), robertsonian translocations (2.4%), isochromosomes (0.6%), and mosaics (1.2%). We observed a slightly higher incidence of DS childbirth in younger mothers compared to mothers with advanced age. We compared the somatic aneuploidy in peripheral blood of mothers having DS children (MDS) and control mothers (CM) to identify biomarkers for predicting the risk for DS childbirths. No significant difference was observed. After induced demethylation in peripheral blood cells, we did not observe a significant difference in the frequency of aneuploidy between MDS and CM. In conclusion, free trisomy 21 is the most common type of chromosomal abnormality in DS. A small number of DS cases have translocations and mosaicism of chromosome 21. Additionally, somatic aneuploidy in the peripheral blood from the mother is not an effective marker to predict DS childbirths.


Assuntos
Aneuploidia , Síndrome de Down/classificação , Síndrome de Down/genética , Marcadores Genéticos/genética , Mães , Adulto , Cromossomos Humanos Par 21/genética , Análise Citogenética , Síndrome de Down/prevenção & controle , Feminino , Humanos , Hibridização in Situ Fluorescente , Isocromossomos/genética , Masculino , Idade Materna , Mosaicismo , Medição de Risco , Translocação Genética , Trissomia/diagnóstico , Trissomia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa