Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(12): 1585-1596, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020659

RESUMO

Sepsis is a biphasic disease characterized by an acute inflammatory response, followed by a prolonged immunosuppressive phase. Therapies aimed at controlling inflammation help to reduce the time patients with sepsis spend in intensive care units, but they do not lead to a reduction in overall mortality. Recently, the focus has been on addressing the immunosuppressive phase, often caused by apoptosis of immune cells. However, molecular triggers of these events are not yet known. Using whole-genome CRISPR screening in mice, we identified a triggering receptor expressed on myeloid cells (TREM) family receptor, TREML4, as a key regulator of inflammation and immune cell death in sepsis. Genetic ablation of Treml4 in mice demonstrated that TREML4 regulates calcium homeostasis, the inflammatory cytokine response, myeloperoxidase activation, the endoplasmic reticulum stress response and apoptotic cell death in innate immune cells, leading to an overall increase in survival rate, both during the acute and chronic phases of polymicrobial sepsis.


Assuntos
Suscetibilidade a Doenças , Imunidade Inata , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sepse/etiologia , Animais , Biomarcadores , Morte Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Edição de Genes , Técnicas de Silenciamento de Genes , Marcação de Genes , Genômica/métodos , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Int J High Perform Comput Appl ; 37(1): 28-44, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647365

RESUMO

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.

3.
Clin Sci (Lond) ; 134(23): 3137-3158, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33284956

RESUMO

Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Hepatopatias/enzimologia , Fígado/enzimologia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/patogenicidade , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Biomarcadores/metabolismo , COVID-19/enzimologia , COVID-19/etiologia , COVID-19/terapia , Terapia Genética , Humanos , Fígado/fisiopatologia , Fígado/virologia , Hepatopatias/terapia , Hepatopatias/virologia , Camundongos
4.
Mol Vis ; 23: 872-888, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259393

RESUMO

Purpose: Microarray and RNA sequencing studies in the chick model of early optically induced refractive error have implicated thousands of genes, many of which have also been linked to ocular pathologies in humans, including age-related macular degeneration (AMD), choroidal neovascularization, glaucoma, and cataract. These findings highlight the potential relevance of the chick model to understanding both refractive error development and the progression to secondary pathological complications. The present study aimed to determine whether proteomic responses to early optical defocus in the chick share similarities with these transcriptome-level changes, particularly in terms of dysregulation of pathology-related molecular processes. Methods: Chicks were assigned to a lens condition (monocular +10 D [diopters] to induce hyperopia, -10 D to induce myopia, or no lens) on post-hatch day 5. Biometric measures were collected following a further 6 h and 48 h of rearing. The retina/RPE was then removed and prepared for liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) on an LTQ-Orbitrap Elite. Raw data were processed using MaxQuant, and differentially abundant proteins were identified using moderated t tests (fold change ≥1.5, Benjamini-Hochberg adjusted p<0.05). These differentially abundant proteins were compared with the genes and proteins implicated in previous exploratory transcriptome and proteomic studies of refractive error, as well as the genes and proteins linked to the ocular pathologies listed above for which myopia or hyperopia are risk factors. Finally, gene set enrichment analysis (GSEA) was used to assess whether gene sets from the Human Phenotype Ontology database were enriched in the lens groups relative to the no lens groups, and at the top or bottom of the protein data ranked by Spearman's correlation with refraction at 6 and 48 h. Results: Refractive errors of -2.63 D ± 0.31 D (mean ± standard error, SE) and 3.90 D ± 0.37 D were evident in the negative and positive lens groups, respectively, at 6 h. By 48 h, refractive compensation to both lens types was almost complete (negative lens -9.70 D ± 0.41 D, positive lens 7.70 D ± 0.44 D). More than 140 differentially abundant proteins were identified in each lens group relative to the no lens controls at both time points. No proteins were differentially abundant between the negative and positive lens groups at 6 h, and 13 were differentially abundant at 48 h. As there was substantial overlap in the proteins implicated across the six comparisons, a total of 390 differentially abundant proteins were identified. Sixty-five of these 390 proteins had previously been implicated in transcriptome studies of refractive error animal models, and 42 had previously been associated with AMD, choroidal neovascularization, glaucoma, and/or cataract in humans. The overlap of differentially abundant proteins with AMD-associated genes and proteins was statistically significant for all conditions (Benjamini-Hochberg adjusted p<0.05), with over-representation analysis implicating ontologies related to oxidative stress, cholesterol homeostasis, and melanin biosynthesis. GSEA identified significant enrichment of genes associated with abnormal electroretinogram, photophobia, and nyctalopia phenotypes in the proteins negatively correlated with ocular refraction across the lens groups at 6 h. The implicated proteins were primarily linked to photoreceptor dystrophies and mitochondrial disorders in humans. Conclusions: Optical defocus in the chicks induces rapid changes in the abundance of many proteins in the retina/RPE that have previously been linked to inherited and age-related ocular pathologies in humans. Similar changes have been identified in a meta-analysis of chick refractive error transcriptome studies, highlighting the chick as a model for the study of optically induced stress with possible relevance to understanding the development of a range of pathological states in humans.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Hiperopia/metabolismo , Miopia/metabolismo , Proteoma/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Animais Recém-Nascidos , Biometria , Galinhas , Cromatografia Líquida , Oftalmopatias Hereditárias/metabolismo , Proteínas do Olho/genética , Degeneração Macular/metabolismo , Masculino , Fenótipo , Análise Serial de Proteínas , Proteoma/genética , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
5.
Biochim Biophys Acta Gen Subj ; 1861(8): 1981-1991, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28499821

RESUMO

Thiazolidinedione (TZD) compounds targeting the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) demonstrate unique benefits for the treatment of insulin resistance and type II diabetes. TZDs include rosiglitazone, pioglitazone and rivoglitazone, with the latter being the most potent. The TZDs are only marginally selective for the therapeutic target PPARγ as they also activate PPARα and PPARδ homologues to varying degrees, causing off-target effects. While crystal structures for TZD compounds in complex with PPARγ are available, minimal structural information is available for TZDs bound to PPARα and PPARδ. This paucity of structural information has hampered the determination of precise structural mechanisms involved in TZD selectivity between PPARs. To help address these questions molecular dynamic simulations were performed of rosiglitazone, pioglitazone and rivoglitazone in complex with PPARα, PPARδ, and PPARγ in order to better understand the mechanisms of PPAR selectivity. The simulations revealed that TZD interactions with residues Tyr314 and Phe318 of PPARα and residues Phe291 and Thr253 of PPARδ as well as the omega loop, are key determinants of TZD receptor selectivity. Notably, in this study, we solve the first X-ray crystal structure of rivoglitazone bound to any PPAR. Rivoglitazone forms a unique hydrogen bond network with the residues of the PPARγ co-activator binding surface (known as AF2) and makes more extensive contacts with helix 3 and the ß-sheet as compared to model TZD compounds such as rosiglitazone.


Assuntos
PPAR delta/química , PPAR gama/química , Tiazolidinedionas/química , Sítios de Ligação , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
ACS Omega ; 8(32): 29143-29149, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599921

RESUMO

warpDOCK is an open-source pipeline for virtual small-molecule drug discovery using cloud infrastructure. warpDOCK is designed from the ground up for the Oracle Cloud Infrastructure (OCI), enabling harmonious parallelism of docking calculations over thousands to hundreds of thousands of cores. This enables cost-effective sampling of ultra-large chemical libraries, potentially reducing the time to identify lead drug candidates by orders of magnitude. By utilizing established docking software and automating each step of the process, warpDOCK makes large-scale virtual screening accessible to a broad user group. The warpDOCK code can be found at the BruningLab GitHub repository (https://github.com/BruningLab/warpDOCK).

7.
Hepatol Commun ; 6(9): 2523-2537, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593203

RESUMO

Splanchnic vasodilatation contributes to the development and aggravation of portal hypertension (PHT). We previously demonstrated that in cirrhosis, angiotensin- mediates splanchnic vasodilatation through the Mas receptor (MasR). In this study, we investigated whether the recently characterized second receptor for angiotensin-(1-7), Mas-related G protein-coupled receptor type D (MrgD), contributes to splanchnic vasodilatation in cirrhotic and noncirrhotic PHT. Splanchnic vascular hemodynamic and portal pressure were determined in two rat models of cirrhotic PHT and a rat model with noncirrhotic PHT, treated with either MrgD blocker D-Pro7 -Ang-(1-7) (D-Pro) or MasR blocker A779. Gene and protein expression of MrgD and MasR were measured in splanchnic vessels and livers of cirrhotic and healthy rats and in patients with cirrhosis and healthy subjects. Mesenteric resistance vessels isolated from cirrhotic rats were used in myographs to study their vasodilatory properties. MrgD was up-regulated in cirrhotic splanchnic vessels but not in the liver. In cirrhotic rats, treatment with D-Pro but not A779 completely restored splanchnic vascular resistance to a healthy level, resulting in a 33% reduction in portal pressure. Mesenteric vessels pretreated with D-Pro but not with A779 failed to relax in response to acetylcholine. There was no splanchnic vascular MrgD or MasR up-regulation in noncirrhotic PHT; thus, receptor blockers had no effect on splanchnic hemodynamics. Conclusion: MrgD plays a major role in the development of cirrhotic PHT and is a promising target for the development of novel therapies to treat PHT in cirrhosis. Moreover, neither MrgD nor MasR contributes to noncirrhotic PHT.


Assuntos
Hipertensão Portal , Receptores Acoplados a Proteínas G , Animais , Modelos Animais de Doenças , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática/complicações , Proteínas do Tecido Nervoso , Pressão na Veia Porta , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores
8.
Neurol Genet ; 8(6): e200026, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36405397

RESUMO

Background and Objectives: Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ε2, ε3, and ε4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ε2 is protective against AD relative to ε3, ε4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods: bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ε2/3 (n = 5), ε3/3 (n = 5), ε3/4 (n = 6), and ε4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results: Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ε4/4 and ε2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion: For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages.

9.
J Alzheimers Dis ; 90(3): 1057-1072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213994

RESUMO

BACKGROUND: Brain tissue-derived extracellular vesicles (bdEVs) play neurodegenerative and protective roles, including in Alzheimer's disease (AD). Extracellular vesicles (EVs) may also leave the brain to betray the state of the CNS in the periphery. Only a few studies have profiled the proteome of bdEVs and source brain tissue. Additionally, studies focusing on bdEV cell type-specific surface markers are rare. OBJECTIVE: We aimed to reveal the pathological mechanisms inside the brain by profiling the tissue and bdEV proteomes in AD patients. In addition, to indicate targets for capturing and molecular profiling of bdEVs in the periphery, CNS cell-specific markers were profiled on the intact bdEV surface. METHODS: bdEVs were separated and followed by EV counting and sizing. Brain tissue and bdEVs from age-matched AD patients and controls were then proteomically profiled. Total tau (t-tau), phosphorylated tau (p-tau), and antioxidant peroxiredoxins (PRDX) 1 and 6 were measured by immunoassay in an independent bdEV separation. Neuron, microglia, astrocyte, and endothelia markers were detected on intact EVs by multiplexed ELISA. RESULTS: Overall, concentration of recovered bdEVs was not affected by AD. Proteome differences between AD and control were more pronounced for bdEVs than for brain tissue. Levels of t-tau, p-tau, PRDX1, and PRDX6 were significantly elevated in AD bdEVs compared with controls. Release of certain cell-specific bdEV markers was increased in AD. CONCLUSION: Several bdEV proteins are involved in AD mechanisms and may be used for disease monitoring. The identified CNS cell markers may be useful tools for peripheral bdEV capture.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/patologia , Proteoma/metabolismo , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo
10.
Vet Sci ; 8(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34679046

RESUMO

Teladorsagia circumcincta is the most important gastrointestinal parasite in the livestock industry in temperate regions around the world, causing great economic losses. The infective third-stage larvae (L3) of Teladorsagia circumcincta secrete a large number of excretory-secretory (E/S) molecules, some of which are likely to play critical roles in modulating the host immune response. One of the most abundant E/S molecules is a protein termed Tci-gal-1, which has similarity to mammalian galectins. Galectins are a family of carbohydrate-binding molecules, with characteristic domain organisation and affinity for ß-galactosids that mediate a variety of important cellular functions including inflammation and immune responses. To understand the role of Tci-gal-1 at the host-parasite interface, we used a proteomics pull-down approach to identify Tc-gal-1 interacting proteins from sheep abomasal scrapes and whole tissue. A total of 135 unique proteins were identified from whole abomasal tissue samples, while 89 proteins were isolated from abomasal scrape samples. Of these proteins, 63 were present in both samples. Many of the host proteins identified, such as trefoil factors and mucin-like proteins, play critical roles in the host response. The identification of Tci-gal-1 binding partners provides new insights on host-parasite interactions and could lead to the development of new control strategies.

11.
bioRxiv ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34816263

RESUMO

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT: Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.

12.
World J Gastroenterol ; 26(40): 6111-6140, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33177789

RESUMO

Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.


Assuntos
Varizes Esofágicas e Gástricas , Hipertensão Portal , Hemorragia Gastrointestinal , Humanos , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/etiologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Pressão na Veia Porta
13.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708779

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the deposition of misfolded proteins in the motor cortex and motor neurons. Although a multitude of ALS-associated mutated proteins have been identified, several have been linked to small extracellular vesicles such as exosomes involved in cell-cell communication. This study aims to determine the proteome of extracellular vesicles isolated from the motor cortex of ALS subjects and to identify novel ALS-associated deregulated proteins. Motor cortex extracellular vesicles (MCEVs) were isolated from human postmortem ALS (n = 10) and neurological control (NC, n = 5) motor cortex brain tissues and the MCEVs protein content subsequently underwent mass spectrometry analysis, allowing for a panel of ALS-associated proteins to be identified. This panel consists of 16 statistically significant differentially packaged proteins identified in the ALS MCEVs. This includes several upregulated RNA-binding proteins which were determined through pathway analysis to be associated with stress granule dynamics. The identification of these RNA-binding proteins in the ALS MCEVs suggests there may be a relationship between ALS-associated stress granules and ALS MCEV packaging, highlighting a potential role for small extracellular vesicles such as exosomes in the pathogenesis of ALS and as potential peripheral biomarkers for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Vesículas Extracelulares/metabolismo , Córtex Motor/metabolismo , Mudanças Depois da Morte , Proteoma/metabolismo , Estudos de Casos e Controles , Exossomos/metabolismo , Vesículas Extracelulares/ultraestrutura , Ontologia Genética , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Mapas de Interação de Proteínas
14.
J Extracell Vesicles ; 9(1): 1750810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363014

RESUMO

Background: Fungal extracellular vesicles (EVs) have been implicated in host-pathogen and pathogen-pathogen communication in some fungal diseases. In depth research into fungal EVs has been hindered by the lack of specific protein markers such as those found in mammalian EVs that have enabled sophisticated isolation and analysis techniques. Despite their role in fungal EV biogenesis, ESCRT proteins such as Vps23 (Tsg101) and Bro1 (ALIX) are not present as fungal EV cargo. Furthermore, tetraspanin homologs are yet to be identified in many fungi including the model yeast S. cerevisiae. Objective: We performed de novo identification of EV protein markers for the major human fungal pathogen Candida albicans with adherence to MISEV2018 guidelines. Materials and methods: EVs were isolated by differential ultracentrifugation from DAY286, ATCC90028 and ATCC10231 yeast cells, as well as DAY286 biofilms. Whole cell lysates (WCL) were also obtained from the EV-releasing cells. Label-free quantitative proteomics was performed to determine the set of proteins consistently enriched in EVs compared to WCL. Results: 47 proteins were consistently enriched in C. albicans EVs. We refined these to 22 putative C. albicans EV protein markers including the claudin-like Sur7 family (Pfam: PF06687) proteins Sur7 and Evp1 (orf19.6741). A complementary set of 62 EV depleted proteins was selected as potential negative markers. Conclusions: The marker proteins for C. albicans EVs identified in this study will be useful tools for studies on EV biogenesis and cargo loading in C. albicans and potentially other fungal species and will also assist in elucidating the role of EVs in C. albicans pathogenesis. Many of the proteins identified as putative markers are fungal specific proteins indicating that the pathways of EV biogenesis and cargo loading may be specific to fungi, and that assumptions made based on studies in mammalian cells could be misleading. Abbreviations: A1 - ATCC10231; A9 - ATCC90028; DAY B - DAY286 biofilm; DAY Y - DAY286 yeast; EV - extracellular vesicle; Evp1 - extracellular vesicle protein 1 (orf19.6741); GO - gene ontology; Log2(FC) - log2(fold change); MCC - membrane compartment of Can1; MDS - multidimensional scaling; MISEV - minimal information for studies of EVs; sEVs - small EVs; SP - signal peptide; TEMs - tetraspanin enriched microdomains; TM - transmembrane; VDM - vesicle-depleted medium; WCL - whole cell lysate.

15.
Protein Sci ; 29(12): 2495-2509, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33085168

RESUMO

Corticosteroid-binding globulin (CBG) transports cortisol and other steroids. High-affinity CBG (haCBG) undergoes proteolysis of the reactive center loop (RCL) by neutrophil elastase (NE) altering conformation to low-affinity CBG (laCBG). Elevated temperature reduces CBG:cortisol binding affinity. Surface plasmon resonance was used to determine binding profiles of 19 steroids to haCBG and laCBG at 25, 37, and 39°C mimicking pyrexia and pH 7.4 and 7.0 mimicking acidosis, pathophysiological conditions relevant to sepsis. An expected 4-8-fold reduction in affinity for cortisol, cortisone, corticosterone, 11-deoxycortisol, progesterone, 17-hydroxyprogesterone, and prednisolone occurred with NE-mediated haCBG-to-laCBG conversion. CBG:cortisol binding affinity was further reduced 3.5-fold at 39°C relative to 37°C, binding affinity was also reduced by acidosis for both haCBG and laCBG. Using a conformational antibody generated against the RCL, we confirmed RCL antibody binding was eliminated by NE cleavage, but preserved in pyrexia and acidosis. Molecular modeling studies performed at 40°C confirmed a critical role for Trp371, positioned within the steroid-binding pocket, in ligand binding. These studies demonstrated CBG binding affinity to range of steroids is ligand specific and is reduced with NE-mediated haCBG-to-laCBG transition. Reduced CBG:cortisol binding occurs with increased temperature and in acidosis. Increased flexibility of the Trp371 side chain is proposed in the thermo-coupling mechanism of cortisol release. The synergy of NE cleavage, pyrexia, and acidosis on CBG:cortisol binding may serve to enhance cortisol delivery to the interstitial space in inflammation.


Assuntos
17-alfa-Hidroxiprogesterona/química , Elastase de Leucócito/química , Prednisolona/química , Transcortina/química , Domínio Catalítico , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Elastase de Leucócito/metabolismo , Transcortina/metabolismo
16.
Front Neurol ; 11: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849183

RESUMO

Currently the longitudinal proteomic profile of post-ischemic stroke recovery is relatively unknown with few well-accepted biomarkers or understanding of the biological systems that underpin recovery. We aimed to characterize plasma derived biological pathways associated with recovery during the first year post event using a discovery proteomics workflow coupled with a topological pathway systems biology approach. Blood samples (n = 180, ethylenediaminetetraacetic acid plasma) were collected from a subgroup of 60 first episode stroke survivors from the Australian START study at 3 timepoints: 3-7 days (T1), 3-months (T2) and 12-months (T3) post-stroke. Samples were analyzed by liquid chromatography mass spectrometry using label-free quantification (data available at ProteomeXchange with identifier PXD015006). Differential expression analysis revealed that 29 proteins between T1 and T2, and 33 proteins between T1 and T3 were significantly different, with 18 proteins commonly differentially expressed across the two time periods. Pathway analysis was conducted using Gene Graph Enrichment Analysis on both the Kyoto Encyclopedia of Genes and Genomes and Reactome databases. Pathway analysis revealed that the significantly differentiated proteins between T1 and T2 were consistently found to belong to the complement pathway. Further correlational analyses utilized to examine the changes in regulatory effects of proteins over time identified significant inhibitory regulation of clusterin on complement component 9. Longitudinal post-stroke blood proteomics profiles suggest that the alternative pathway of complement activation remains in a state of higher activation from 3-7 days to 3 months post-stroke, while simultaneously being regulated by clusterin and vitronectin. These findings also suggest that post-stroke induced sterile inflammation and immunosuppression could inhibit recovery within the 3-month window post-stroke.

17.
Int J Parasitol ; 49(12): 921-932, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31560927

RESUMO

Fasciola hepatica is a globally distributed zoonotic trematode that causes fasciolosis in livestock, wildlife, ruminants and humans. Fasciolosis causes a significant economic impact on the agricultural sector and affects human health. Due to the increasing prevalence of triclabendazole resistance in F. hepatica, alternative treatment methods are required. Many protein antigens have been trialled as vaccine candidates with low success, however, the tegument of F. hepatica is highly glycosylated and the parasite-derived glycoconjugate molecules have been identified as an important mediator in host-parasite interactions and as prime targets for the host immune system. Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are two ruminant-specific glycan-binding proteins, showing upregulation in the bile duct of sheep infected with F. hepatica, which are believed to mediate host-parasite interaction and innate immunity against internal parasites. For the first known time, this study presents the ligand profile of whole worm and tegument extracts of F. hepatica that interacted with immobilised LGALS-11 and LGALS-14. LGALS-14 interacted with a total of 255 F. hepatica proteins. The protein which had the greatest interaction was identified as an uncharacterised protein which contained a C-type lectin domain. Many of the other proteins identified were previously trialled vaccine candidates including glutathione S-transferase, paramyosin, cathepsin L, cathepsin B, fatty acid binding protein and leucine aminopeptidase. In comparison to LGALS-14, LGALS-11 interacted with only 49 F. hepatica proteins and it appears to have a much smaller number of binding partners in F. hepatica. This is, to our knowledge, the first time host-specific lectins have been used for the enrichment of F. hepatica glycoproteins and this study has identified a number of glycoproteins that play critical roles in host-parasite interactions which have the potential to be novel vaccine candidates.


Assuntos
Antígenos de Helmintos/análise , Fasciola hepatica/crescimento & desenvolvimento , Galectinas/metabolismo , Proteínas de Helminto/análise , Interações Hospedeiro-Parasita , Mapeamento de Interação de Proteínas , Ovinos , Animais , Antígenos de Helmintos/isolamento & purificação , Proteínas de Helminto/isolamento & purificação , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteômica
18.
PeerJ ; 6: e4510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576976

RESUMO

Haemonchus contortus is the most pathogenic nematode of small ruminants. Infection in sheep and goats results in anaemia that decreases animal productivity and can ultimately cause death. The involvement of ruminant-specific galectin-11 (LGALS-11) and galectin-14 (LGALS-14) has been postulated to play important roles in protective immune responses against parasitic infection; however, their ligands are unknown. In the current study, LGALS-11 and LGALS-14 ligands in H. contortus were identified from larval (L4) and adult parasitic stages extracts using immobilised LGALS-11 and LGALS-14 affinity column chromatography and mass spectrometry. Both LGALS-11 and LGALS-14 bound more putative protein targets in the adult stage of H. contortus (43 proteins) when compared to the larval stage (two proteins). Of the 43 proteins identified in the adult stage, 34 and 35 proteins were bound by LGALS-11 and LGALS-14, respectively, with 26 proteins binding to both galectins. Interestingly, hematophagous stage-specific sperm-coating protein and zinc metalloprotease (M13), which are known vaccine candidates, were identified as putative ligands of both LGALS-11 and LGALS-14. The identification of glycoproteins of H. contortus by LGALS-11 and LGALS-14 provide new insights into host-parasite interactions and the potential for developing new interventions.

19.
Hum Vaccin Immunother ; 13(6): 1-11, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301280

RESUMO

Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Inulina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Inulina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Tecnologia Farmacêutica/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Adulto Jovem
20.
FEBS J ; 284(6): 985-1002, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165677

RESUMO

The fungal pathogen Aspergillus fumigatus has been implicated in a drastic increase in life-threatening infections over the past decade. However, compared to other microbial pathogens, little is known about the essential molecular processes of this organism. One such fundamental process is DNA replication. The protein responsible for ensuring processive DNA replication is PCNA (proliferating cell nuclear antigen, also known as the sliding clamp), which clamps the replicative polymerase to DNA. Here we present the first crystal structure of a sliding clamp from a pathogenic fungus (A. fumigatus), at 2.6Å. Surprisingly, the structure bears more similarity to the human sliding clamp than other available fungal sliding clamps. Reflecting this, fluorescence polarization experiments demonstrated that AfumPCNA interacts with the PCNA-interacting protein (PIP-box) motif of human p21 with an affinity (Kd ) of 3.1 µm. Molecular dynamics simulations were carried out to better understand how AfumPCNA interacts with human p21. These simulations revealed that the PIP-box bound to AfuPCNA forms a secondary structure similar to that observed in the human complex, with a central 310 helix contacting the hydrophobic surface pocket of AfumPCNA as well as a ß-strand that forms an antiparallel sheet with the AfumPCNA surface. Differences in the 310 helix interaction with PCNA, attributed to residue Thr131 of AfumPCNA, and a less stable ß-strand formation, attributed to residues Gln123 and His125 of AfumPCNA, are likely causes of the over 10-fold lower affinity of the p21 PIP-box for AfumPCNA as compared to hPCNA. DATABASE: The atomic coordinates and structure factors for the Aspergillus fumigatus sliding clamp can be found in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession code 5TUP.


Assuntos
Aspergillus fumigatus/química , Inibidor de Quinase Dependente de Ciclina p21/química , Interações Hospedeiro-Patógeno/genética , Antígeno Nuclear de Célula em Proliferação/química , Motivos de Aminoácidos/genética , Aspergilose/genética , Aspergilose/patologia , Sítios de Ligação , Cristalografia por Raios X , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/química , Replicação do DNA/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa