Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012484, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241090

RESUMO

Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.


Assuntos
Apicoplastos , Glicosilfosfatidilinositóis , Plasmodium falciparum , Terpenos , Plasmodium falciparum/metabolismo , Apicoplastos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Terpenos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , Animais , Merozoítos/metabolismo
2.
PLoS Biol ; 20(5): e3001638, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552541

RESUMO

Cryptosporidium is a leading cause of death from childhood diarrhea, but its biology is poorly understood. A recent study in PLOS Biology reveals hitherto unknown aspects of the parasite's life cycle that may lead to improvements in ex vivo culture.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Cryptosporidium/genética , Feminino , Células Germinativas , Estágios do Ciclo de Vida , Masculino
3.
J Biol Chem ; 299(3): 103006, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775128

RESUMO

Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Cryptosporidium parvum/metabolismo , Criptosporidiose/parasitologia , Criptosporidiose/prevenção & controle , Glicosilação , Cryptosporidium/metabolismo , Proteínas de Protozoários/química , Esporozoítos , Trombospondinas/metabolismo
4.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167626

RESUMO

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Assuntos
Variação Genética , Genoma de Protozoário , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Transcriptoma , Animais , Cromossomos/parasitologia , Genes de Protozoários , Genoma , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA
5.
Mol Syst Biol ; 17(4): e10023, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33821563

RESUMO

The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C-labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage-repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.


Assuntos
Marcação por Isótopo , Redes e Vias Metabólicas , Metabolômica , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Animais , Transporte de Elétrons , Eritrócitos/parasitologia , Glicina Hidroximetiltransferase/metabolismo , Hemoglobinas/metabolismo , Humanos , Análise do Fluxo Metabólico , Metaboloma , Mitocôndrias/metabolismo , Parasitos/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Serina/metabolismo , Terpenos/metabolismo , Trofozoítos/metabolismo
6.
PLoS Biol ; 17(7): e3000376, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318858

RESUMO

Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that selectively target apicoplast housekeeping functions, including DNA replication and protein translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromycin) are in clinical use as antimalarials. A major limitation of such drugs is that treated parasites only arrest one intraerythrocytic development cycle (approximately 48 hours) after treatment commences, a phenotype known as the 'delayed death' effect. The molecular basis of delayed death is a long-standing mystery in parasitology, and establishing the mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Parasites undergoing delayed death transmit defective apicoplasts to their daughter cells and cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the isoprenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills the parasite remains unknown. We investigated the requirements for the range of isoprenoids in the human malaria parasite Plasmodium falciparum and characterised the molecular and morphological phenotype of parasites experiencing delayed death. Metabolomic profiling reveals disruption of digestive vacuole function in the absence of apicoplast derived isoprenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation and the accumulation of cytostomal invaginations, characteristics common in digestive vacuole disruption. We show that digestive vacuole disruption results from a defect in the trafficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking proteins abrogates their membrane attachment and function and prevents the parasite from feeding. Our data show that the proximate cause of delayed death is an interruption of protein prenylation and consequent cellular trafficking defects.


Assuntos
Apicoplastos/metabolismo , Espaço Intracelular/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/farmacologia , Morte Celular/efeitos dos fármacos , Hemiterpenos/metabolismo , Hemiterpenos/farmacologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/parasitologia , Malária Falciparum/parasitologia , Metabolômica/métodos , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Prenilação de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/parasitologia
7.
Antimicrob Agents Chemother ; 65(11): e0031121, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460304

RESUMO

Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria.


Assuntos
Malária , Parasitos , Animais , Malária/tratamento farmacológico , Masculino , Plasmodium berghei , Triazinas/farmacologia
8.
PLoS Biol ; 16(9): e2005895, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212465

RESUMO

Malaria parasites (Plasmodium spp.) and related apicomplexan pathogens contain a nonphotosynthetic plastid called the apicoplast. Derived from an unusual secondary eukaryote-eukaryote endosymbiosis, the apicoplast is a fascinating organelle whose function and biogenesis rely on a complex amalgamation of bacterial and algal pathways. Because these pathways are distinct from the human host, the apicoplast is an excellent source of novel antimalarial targets. Despite its biomedical importance and evolutionary significance, the absence of a reliable apicoplast proteome has limited most studies to the handful of pathways identified by homology to bacteria or primary chloroplasts, precluding our ability to study the most novel apicoplast pathways. Here, we combine proximity biotinylation-based proteomics (BioID) and a new machine learning algorithm to generate a high-confidence apicoplast proteome consisting of 346 proteins. Critically, the high accuracy of this proteome significantly outperforms previous prediction-based methods and extends beyond other BioID studies of unique parasite compartments. Half of identified proteins have unknown function, and 77% are predicted to be important for normal blood-stage growth. We validate the apicoplast localization of a subset of novel proteins and show that an ATP-binding cassette protein ABCF1 is essential for blood-stage survival and plays a previously unknown role in apicoplast biogenesis. These findings indicate critical organellar functions for newly discovered apicoplast proteins. The apicoplast proteome will be an important resource for elucidating unique pathways derived from secondary endosymbiosis and prioritizing antimalarial drug targets.


Assuntos
Apicoplastos/metabolismo , Biologia Computacional/métodos , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Algoritmos , Animais , Bases de Dados de Proteínas , Retículo Endoplasmático/metabolismo , Plasmodium falciparum/metabolismo
9.
Mol Microbiol ; 112(6): 1627-1631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31271672

RESUMO

Sexual development is integral to the transmission of Plasmodium parasites between vertebrates and mosquitos. Recent years have seen great advances in understanding the gene expression that underlies commitment of asexual parasites to differentiate into sexual gametocyte stages, then how they mature and form gametes once inside a mosquito. Less well understood is how parasites differentially control development to become males or females. Plasmodium parasites are haploid at the time of sexual differentiation, but a clonal haploid line can produce both male and female gametocytes, so they presumably lack the sex-determining alleles present in some other eukaryotes. Though the molecular switch to initiate male or female development remains hidden, recent studies reveal regulatory proteins needed for the sex-specific maturation of male and female gametocytes. Yuda and collaborators report the characterization of a transcription factor necessary for female gametocyte maturation. With renewed attention on malaria elimination, sex has been an increasing focus because transmission-blocking strategies are likely to be an important component of elimination efforts.


Assuntos
Plasmodium/crescimento & desenvolvimento , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Animais , Feminino , Regulação da Expressão Gênica/genética , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Parasitos/genética , Parasitos/metabolismo , Plasmodium/genética , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Desenvolvimento Sexual/genética , Desenvolvimento Sexual/fisiologia , Fatores de Transcrição/genética
10.
Cell Microbiol ; 19(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28205319

RESUMO

Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill-defined due to the lack of functional studies. In this study, we show that the rhoptry-associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post-invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra-erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite-host cell interface are not simply by-products of the invasion process but contribute to the growth of Plasmodium in vivo.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Patógeno , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Malária/parasitologia , Camundongos Endogâmicos BALB C
11.
BMC Genomics ; 18(1): 734, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923023

RESUMO

BACKGROUND: The clinical symptoms of malaria are caused by the asexual replication of Plasmodium parasites in the blood of the vertebrate host. To spread to new hosts, however, the malaria parasite must differentiate into sexual forms, termed gametocytes, which are ingested by a mosquito vector. Sexual differentiation produces either female or male gametocytes, and involves significant morphological and biochemical changes. These transformations prepare gametocytes for the rapid progression to gamete formation and fertilisation, which occur within 20 min of ingestion. Here we present the transcriptomes of asexual, female, and male gametocytes in P. berghei, and a comprehensive statistically-based differential-expression analysis of the transcriptional changes that underpin this sexual differentiation. RESULTS: RNA-seq analysis revealed numerous differences in the transcriptomes of female and male gametocytes compared to asexual stages. Overall, there is net downregulation of transcripts in gametocytes compared to asexual stages, with this trend more marked in female gametocytes. Our analysis identified transcriptional changes in previously-characterised gametocyte-specific pathways, which validated our approach. We also detected many previously-unreported female- and male-specific pathways and genes. Transcriptional biases in stage and gender were then used to investigate sex-specificity and sexual dimorphism of Plasmodium in an evolutionary context. Sex-related gene expression is well conserved between Plasmodium species, but relatively poorly conserved in related organisms outside this genus. This pattern of conservation is most evident in genes necessary for both male and female gametocyte formation. However, this trend is less pronounced for male-specific genes, which are more highly conserved outside the genus than genes specific to female development. CONCLUSIONS: We characterised the transcriptional changes that are integral to the development of the female and male sexual forms of Plasmodium. These differential-expression patterns provide a vital insight into understanding the gender-specific characteristics of this essential stage that is the primary target for treatments that block parasite transmission. Our results also offer insight into the evolution of sex genes through Alveolata, and suggest that many Plasmodium sex genes evolved within the genus. We further hypothesise that male gametocytes co-opted pre-existing cellular machinery in their evolutionary history, whereas female gametocytes evolved more through the development of novel, parasite-specific pathways.


Assuntos
Perfilação da Expressão Gênica , Plasmodium berghei/genética , Motivos de Nucleotídeos/genética , Filogenia , Plasmodium berghei/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
12.
Nucleic Acids Res ; 43(9): 4661-75, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25870410

RESUMO

Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine-rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.


Assuntos
Processamento Alternativo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Toxoplasma/genética , Estruturas do Núcleo Celular/química , Expressão Gênica , Proteínas Nucleares/análise , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Software , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
13.
J Infect Dis ; 213(2): 276-86, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26150544

RESUMO

Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Atovaquona/farmacologia , Cloroquina/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Hemoglobinas/efeitos dos fármacos , Hemoglobinas/metabolismo , Concentração Inibidora 50 , Azul de Metileno/farmacologia , Naftiridinas/farmacologia , Plasmodium falciparum/metabolismo , Proguanil/farmacologia , Triazinas/farmacologia
14.
Mol Microbiol ; 96(4): 796-814, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25689481

RESUMO

The malaria parasite Plasmodium falciparum has two translationally active organelles - the apicoplast and mitochondrion, which import nuclear-encoded translation factors to mediate protein synthesis. Initiation of translation is a complex step wherein initiation factors (IFs) act in a regulated manner to form an initiation complex. We identified putative organellar IFs and investigated the targeting, structure and function of IF1, IF2 and IF3 homologues encoded by the parasite nuclear genome. A single PfIF1 is targeted to the apicoplast. Apart from its critical ribosomal interactions, PfIF1 also exhibited nucleic-acid binding and melting activities and mediated transcription anti-termination. This suggests a prominent ancillary function for PfIF1 in destabilisation of DNA and RNA hairpin loops encountered during transcription and translation of the A+T rich apicoplast genome. Of the three putative IF2 homologues, only one (PfIF2a) was an organellar protein with mitochondrial localisation. We additionally identified an IF3 (PfIF3a) that localised exclusively to the mitochondrion and another protein, PfIF3b, that was apicoplast targeted. PfIF3a exhibited ribosome anti-association activity, and monosome splitting by PfIF3a was enhanced by ribosome recycling factor (PfRRF2) and PfEF-G(Mit). These results fill a gap in our understanding of organellar translation in Plasmodium, which is the site of action of several anti-malarial compounds.


Assuntos
Apicoplastos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Mitocôndrias/genética , Iniciação Traducional da Cadeia Peptídica , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Apicoplastos/metabolismo , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/genética , Mitocôndrias/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
15.
Antimicrob Agents Chemother ; 60(11): 6650-6663, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572396

RESUMO

High-throughput phenotypic screening of chemical libraries has resulted in the identification of thousands of compounds with potent antimalarial activity, although in most cases, the mechanism(s) of action of these compounds remains unknown. Here we have investigated the mode of action of 90 antimalarial compounds derived from the Malaria Box collection using high-coverage, untargeted metabolomics analysis. Approximately half of the tested compounds induced significant metabolic perturbations in in vitro cultures of Plasmodium falciparum In most cases, the metabolic profiles were highly correlated with known antimalarials, in particular artemisinin, the 4-aminoquinolines, or atovaquone. Select Malaria Box compounds also induced changes in intermediates in essential metabolic pathways, such as isoprenoid biosynthesis (i.e., 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) and linolenic acid metabolism (i.e., traumatic acid). This study provides a comprehensive database of the metabolic perturbations induced by chemically diverse inhibitors and highlights the utility of metabolomics for triaging new lead compounds and defining specific modes of action, which will assist with the development and optimization of new antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Aminoquinolinas/farmacologia , Antimaláricos/química , Artemisininas/farmacologia , Atovaquona/farmacologia , Células Cultivadas , Cromatografia Líquida/métodos , Análise por Conglomerados , Bases de Dados de Compostos Químicos , Ácidos Dicarboxílicos/antagonistas & inibidores , Ácidos Dicarboxílicos/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Metabolômica/métodos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas em Tandem , Terpenos/antagonistas & inibidores , Terpenos/metabolismo
16.
Biochem J ; 458(3): 513-23, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24428730

RESUMO

Plasmodium parasites possess two endosymbiotic organelles: a mitochondrion and a relict plastid called the apicoplast. To accommodate the translational requirements of these organelles in addition to its cytosolic translation apparatus, the parasite must maintain a supply of charged tRNA molecules in each of these compartments. In the present study we investigate how the parasite manages these translational requirements for charged tRNACys with only a single gene for CysRS (cysteinyl-tRNA synthetase). We demonstrate that the single PfCysRS (Plasmodium falciparum CysRS) transcript is alternatively spliced, and, using a combination of endogenous and heterologous tagging experiments in both P. falciparum and Toxoplasma gondii, we show that CysRS isoforms traffic to the cytosol and apicoplast. PfCysRS can recognize and charge the eukaryotic tRNACys encoded by the Plasmodium nucleus as well as the bacterial-type tRNA encoded by the apicoplast genome, albeit with a preference for the eukaryotic type cytosolic tRNA. The results of the present study indicate that apicomplexan parasites have lost their original plastidic cysteinyl-tRNA synthetase, and have replaced it with a dual-targeted eukaryotic type CysRS that recognizes plastid and nuclear tRNACys. Inhibitors of the Plasmodium dual-targeted CysRS would potentially offer a therapy capable of the desirable immediate effects on parasite growth as well as the irreversibility of inhibitors that disrupt apicoplast inheritance.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Citosol/metabolismo , Plasmodium falciparum/enzimologia , Processamento Alternativo , Aminoacil-tRNA Sintetases/genética , Apicoplastos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutação , Plasmodium falciparum/genética , Transporte Proteico , Temperatura , Toxoplasma/genética
17.
Traffic ; 13(11): 1457-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22844982

RESUMO

The establishment of parasite infection within the human erythrocyte is an essential stage in the development of malaria disease. As such, significant interest has focused on the mechanics that underpin invasion and on characterization of parasite molecules involved. Previous evidence has implicated a presenilin-like signal peptide peptidase (SPP) from the most virulent human malaria parasite, Plasmodium falciparum, in the process of invasion where it has been proposed to function in the cleavage of the erythrocyte cytoskeletal protein Band 3. The role of a traditionally endoplasmic reticulum (ER) protease in the process of red blood cell invasion is unexpected. Here, using a combination of molecular, cellular and chemical approaches we provide evidence that PfSPP is, instead, a bona fide ER-resident peptidase that remains intracellular throughout the invasion process. Furthermore, SPP-specific drug inhibition has no effect on erythrocyte invasion whilst having low micromolar potency against intra-erythrocytic development. Contrary to previous reports, these results show that PfSPP plays no role in erythrocyte invasion. Nonetheless, PfSPP clearly represents a potential chemotherapeutic target to block parasite growth, supporting ongoing efforts to develop antimalarial-targeting protein maturation and trafficking during intra-erythrocytic development.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Retículo Endoplasmático/enzimologia , Plasmodium falciparum/enzimologia , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Eritrócitos/enzimologia , Eritrócitos/parasitologia , Humanos , Merozoítos/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Inibidores de Proteases/farmacologia
18.
Mol Microbiol ; 88(5): 891-905, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23614815

RESUMO

The reduced genomes of the apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are actively translated and antibiotic-mediated translation inhibition is detrimental to parasite survival. In order to understand recycling of organellar ribosomes, a critical step in protein translation, we identified ribosome recycling factors (RRF) encoded by the parasite nuclear genome. Targeting of PfRRF1 and PfRRF2 to the apicoplast and mitochondrion respectively was established by localization of leader sequence-GFP fusions. Unlike any RRF characterized thus far, PfRRF2 formed dimers with disulphide interaction(s) and additionally localized in the cytoplasm, thus suggesting adjunct functions for the factor. PfRRF1 carries a large 108-amino-acid insertion in the functionally critical hinge region between the head and tail domains of the protein, yet complemented Escherichia coli RRF in the LJ14frr(ts) mutant and disassembled surrogate E. coli 70S ribosomes in the presence of apicoplast-targeted EF-G. Recombinant PfRRF2 bound E. coli ribosomes and could split monosomes in the presence of the relevant mitochondrial EF-G but failed to complement the LJ14frr(ts) mutant. Although proteins comprising subunits of P. falciparum organellar ribosomes are predicted to differ from bacterial and mitoribosomal counterparts, our results indicate that the essential interactions required for recycling are conserved in parasite organelles.


Assuntos
Apicoplastos/enzimologia , Apicoplastos/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Biossíntese de Proteínas , Multimerização Proteica , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência
19.
Cell Microbiol ; 15(9): 1457-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23461734

RESUMO

Erythrocyte invasion by merozoites forms of the malaria parasite is a key step in the establishment of human malaria disease. To date, efforts to understand cellular events underpinning entry have been limited to insights from non-human parasites, with no studies at sub-micrometer resolution undertaken using the most virulent human malaria parasite, Plasmodium falciparum. This leaves our understanding of the dynamics of merozoite sub-cellular compartments during infectionincomplete, in particular that of the secretory organelles. Using advances in P. falciparum merozoite isolation and new imaging techniques we present a three-dimensional study of invasion using electron microscopy, cryo-electron tomography and cryo-X-ray tomography. We describe the core architectural features of invasion and identify fusion between rhoptries at the commencement of invasion as a hitherto overlooked event that likely provides a critical step that initiates entry. Given the centrality of merozoite organelle proteins to vaccine development, these insights provide a mechanistic framework to understand therapeutic strategies targeted towards the cellular events of invasion.


Assuntos
Tomografia com Microscopia Eletrônica , Endocitose , Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Merozoítos/ultraestrutura , Plasmodium falciparum/fisiologia , Plasmodium falciparum/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Imageamento Tridimensional
20.
Nature ; 455(7214): 757-63, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18843361

RESUMO

The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Assuntos
Genoma de Protozoário/genética , Genômica , Malária Vivax/parasitologia , Plasmodium vivax/genética , Motivos de Aminoácidos , Animais , Artemisininas/metabolismo , Artemisininas/farmacologia , Atovaquona/metabolismo , Atovaquona/farmacologia , Núcleo Celular/genética , Cromossomos/genética , Sequência Conservada/genética , Eritrócitos/parasitologia , Evolução Molecular , Haplorrinos/parasitologia , Humanos , Isocoros/genética , Ligantes , Malária Vivax/metabolismo , Família Multigênica , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/patogenicidade , Plasmodium vivax/fisiologia , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa