Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biol Chem ; 299(6): 104786, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146968

RESUMO

The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Expressão Gênica , Células HEK293 , Mutação , Domínios Proteicos , Transporte Proteico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Respir Res ; 25(1): 106, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419014

RESUMO

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Transversais , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Volume Expiratório Forçado/fisiologia
3.
Am J Transplant ; 20(8): 2198-2205, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32034974

RESUMO

Parametric response mapping (PRM) is a novel computed tomography (CT) technology that has shown potential for assessment of bronchiolitis obliterans syndrome (BOS) after hematopoietic stem cell transplantation (HCT). The primary aim of this study was to evaluate whether variations in image acquisition under real-world conditions affect the PRM measurements of clinically diagnosed BOS. CT scans were obtained retrospectively from 72 HCT recipients with BOS and graft-versus-host disease from Fred Hutchinson Cancer Research Center, Karolinska Institute, and the University of Michigan. Whole lung volumetric scans were performed at inspiration and expiration using site-specific acquisition and reconstruction protocols. PRM and pulmonary function measurements were assessed. Patients with moderately severe BOS at diagnosis (median forced expiratory volume at 1 second [FEV1] 53.5% predicted) had similar characteristics between sites. Variations in site-specific CT acquisition protocols had a negligible effect on the PRM-derived small airways disease (SAD), that is, BOS measurements. PRM-derived SAD was found to correlate with FEV1% predicted and FEV1/ forced vital capacity (R = -0.236, P = .046; and R = -0.689, P < .0001, respectively), which suggests that elevated levels in the PRM measurements are primarily affected by BOS airflow obstruction and not CT scan acquisition parameters. Based on these results, PRM may be applied broadly for post-HCT diagnosis and monitoring of BOS.


Assuntos
Bronquiolite Obliterante , Transplante de Células-Tronco Hematopoéticas , Transplante de Pulmão , Bronquiolite Obliterante/diagnóstico por imagem , Bronquiolite Obliterante/etiologia , Volume Expiratório Forçado , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Pulmão , Estudos Retrospectivos
4.
Acad Radiol ; 31(3): 1148-1159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37661554

RESUMO

RATIONALE AND OBJECTIVES: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both diseases to characterize how and in whom COPD progresses. We aimed to determine if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema progression. MATERIALS AND METHODS: We analyzed paired inspiratory-expiratory chest CT scans at baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at year five to baseline lobar PRM-derived topological readouts. K-means clustering was applied to all observations. Subjects were subtyped based on predominant PRM cluster assignments and assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary function metrics, and clinical measures. RESULTS: We identified distinct lobar imaging patterns and classified subjects into three radiologic subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition from healthy lung to fSAD). Relative to year five emphysema, FT showed rapid local emphysema progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted primarily of at-risk subjects (roughly 60%) with normal spirometry. CONCLUSION: The FT subtype of COPD may allow earlier identification of individuals without spirometrically-defined COPD at-risk for developing emphysema.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
5.
J Heart Lung Transplant ; 43(3): 394-402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37778525

RESUMO

BACKGROUND: Assessment and selection of donor lungs remain largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo computed tomography (CT) images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs before transplantation. METHODS: Clinical measures and ex situ CT scans were collected from 100 cases as part of a prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice according to routine clinical practice, and imaged using a clinical CT scanner before transplantation while stored in the icebox. We trained and tested a supervised machine learning method called dictionary learning, which uses CT scans and learns specific image patterns and features pertaining to each class for a classification task. The results were evaluated with donor and recipient clinical measures. RESULTS: Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based on standard clinical assessment) before CT screening and were consequently implanted. The remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able to detect pulmonary abnormalities on the CT scans. Among the patients who received donor lungs, our algorithm identified recipients who had extended stays in the intensive care unit and were at 19 times higher risk of developing chronic lung allograft dysfunction within 2 years posttransplant. CONCLUSIONS: We have created a strategy to ex vivo screen donor lungs using a CT-based machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in place objective techniques that will assist physicians in accurately screening donor lungs to identify recipients most at risk of posttransplant complications.


Assuntos
Transplante de Pulmão , Doadores de Tecidos , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Ensaios Clínicos como Assunto
6.
Front Physiol ; 14: 1144192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153221

RESUMO

Purpose: The purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV1) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD 0), or with mild-to-moderate (GOLD 1-2) COPD. We trained multiple models to predict rapid FEV1 decline using demographic, clinical and radiologic biomarker data. Training and internal validation data were obtained from the COPDGene study and prediction models were validated against the SPIROMICS cohort. Methods: We used GOLD 0-2 participants (n = 3,821) from COPDGene (60.0 ± 8.8 years, 49.9% male) for variable selection and model training. Accelerated lung function decline was defined as a mean drop in FEV1% predicted of > 1.5%/year at 5-year follow-up. We built logistic regression models predicting accelerated decline based on 22 chest CT imaging biomarker, pulmonary function, symptom, and demographic features. Models were validated using n = 885 SPIROMICS subjects (63.6 ± 8.6 years, 47.8% male). Results: The most important variables for predicting FEV1 decline in GOLD 0 participants were bronchodilator responsiveness (BDR), post bronchodilator FEV1% predicted (FEV1.pp.post), and CT-derived expiratory lung volume; among GOLD 1 and 2 subjects, they were BDR, age, and PRMlower lobes fSAD. In the validation cohort, GOLD 0 and GOLD 1-2 full variable models had significant predictive performance with AUCs of 0.620 ± 0.081 (p = 0.041) and 0.640 ± 0.059 (p < 0.001). Subjects with higher model-derived risk scores had significantly greater odds of FEV1 decline than those with lower scores. Conclusion: Predicting FEV1 decline in at-risk patients remains challenging but a combination of clinical, physiologic and imaging variables provided the best performance across two COPD cohorts.

7.
Neoplasia ; 42: 100911, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269818

RESUMO

Early detection of lung cancer is critical for improvement of patient survival. To address the clinical need for efficacious treatments, genetically engineered mouse models (GEMM) have become integral in identifying and evaluating the molecular underpinnings of this complex disease that may be exploited as therapeutic targets. Assessment of GEMM tumor burden on histopathological sections performed by manual inspection is both time consuming and prone to subjective bias. Therefore, an interplay of needs and challenges exists for computer-aided diagnostic tools, for accurate and efficient analysis of these histopathology images. In this paper, we propose a simple machine learning approach called the graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E). Our method comprises four steps: 1) cascaded graph-based sparse PCA, 2) PCA binary hashing, 3) block-wise histograms, and 4) support vector machine (SVM) classification. In our proposed architecture, graph-based sparse PCA is employed to learn the filter banks of the multiple stages of a convolutional network. This is followed by PCA hashing and block histograms for indexing and pooling. The meaningful features extracted from this GS-PCA are then fed to an SVM classifier. We evaluate the performance of the proposed algorithm on H&E slides obtained from an inducible K-rasG12D lung cancer mouse model using precision/recall rates, Fß-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC) and show that our algorithm is efficient and provides improved detection accuracy compared to existing algorithms.


Assuntos
Algoritmos , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/diagnóstico , Aprendizado de Máquina , Resultado do Tratamento , Pulmão
8.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034670

RESUMO

Background: Assessment and selection of donor lungs remains largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo CT images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs prior to transplantation. Methods: Clinical measures and ex-situ CT scans were collected from 100 cases as part of a prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice according to routine clinical practice, and imaged using a clinical CT scanner prior to transplantation while stored in the icebox. We trained and tested a supervised machine learning method called dictionary learning , which uses CT scans and learns specific image patterns and features pertaining to each class for a classification task. The results were evaluated with donor and recipient clinical measures. Results: Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based on standard clinical assessment) prior to CT screening and were consequently implanted. The remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able to detect pulmonary abnormalities on the CT scans. Among the patients who received donor lungs, our algorithm identified recipients who had extended stays in the ICU and were at 19 times higher risk of developing CLAD within 2 years post-transplant. Conclusions: We have created a strategy to ex vivo screen donor lungs using a CT-based machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in place objective techniques that will assist physicians in accurately screening donor lungs to identify recipients most at risk of post-transplant complications.

9.
medRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37333382

RESUMO

Objectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients, and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. Materials and Methods: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n=8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. Results: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p<0.001) and VfSAD (ß of 0.065, p=0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. Conclusions: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.

10.
Cytometry A ; 81(3): 198-212, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22354758

RESUMO

The 3D spatial organization of genes and other genetic elements within the nucleus is important for regulating gene expression. Understanding how this spatial organization is established and maintained throughout the life of a cell is key to elucidating the many layers of gene regulation. Quantitative methods for studying nuclear organization will lead to insights into the molecular mechanisms that maintain gene organization as well as serve as diagnostic tools for pathologies caused by loss of nuclear structure. However, biologists currently lack automated and high throughput methods for quantitative and qualitative global analysis of 3D gene organization. In this study, we use confocal microscopy and fluorescence in-situ hybridization (FISH) as a cytogenetic technique to detect and localize the presence of specific DNA sequences in 3D. FISH uses probes that bind to specific targeted locations on the chromosomes, appearing as fluorescent spots in 3D images obtained using fluorescence microscopy. In this article, we propose an automated algorithm for segmentation and detection of 3D FISH spots. The algorithm is divided into two stages: spot segmentation and spot detection. Spot segmentation consists of 3D anisotropic smoothing to reduce the effect of noise, top-hat filtering, and intensity thresholding, followed by 3D region-growing. Spot detection uses a Bayesian classifier with spot features such as volume, average intensity, texture, and contrast to detect and classify the segmented spots as either true or false spots. Quantitative assessment of the proposed algorithm demonstrates improved segmentation and detection accuracy compared to other techniques.


Assuntos
DNA/análise , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Microscopia Confocal/métodos , Algoritmos , Anisotropia , Teorema de Bayes , Núcleo Celular/química , Análise Citogenética , Processamento de Imagem Assistida por Computador/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35502294

RESUMO

Chronic obstructive pulmonary disease (COPD) is heterogenous in its clinical manifestations and disease progression. Patients often have disease courses that are difficult to predict with readily available data, such as lung function testing. The ability to better classify COPD into well-defined groups will allow researchers and clinicians to tailor novel therapies, monitor their effects, and improve patient-centered outcomes. Different modalities of assessing these COPD phenotypes are actively being studied, and an area of great promise includes the use of quantitative computed tomography (QCT) techniques focused on key features such as airway anatomy, lung density, and vascular morphology. Over the last few decades, companies around the world have commercialized automated CT software packages that have proven immensely useful in these endeavors. This article reviews the key features of several commercial platforms, including the technologies they are based on, the metrics they can generate, and their clinical correlations and applications. While such tools are increasingly being used in research and clinical settings, they have yet to be consistently adopted for diagnostic work-up and treatment planning, and their full potential remains to be explored.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Progressão da Doença , Humanos , Pulmão/diagnóstico por imagem , Assistência ao Paciente , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/terapia , Software , Tomografia Computadorizada por Raios X/métodos
12.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203345

RESUMO

Chronic rejection of lung allografts has two major subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), which present radiologically either as air trapping with small airways disease or with persistent pleuroparenchymal opacities. Parametric response mapping (PRM), a computed tomography (CT) methodology, has been demonstrated as an objective readout of BOS and RAS and bears prognostic importance, but has yet to be correlated to biological measures. Using a topological technique, we evaluate the distribution and arrangement of PRM-derived classifications of pulmonary abnormalities from lung transplant recipients undergoing redo-transplantation for end-stage BOS (N = 6) or RAS (N = 6). Topological metrics were determined from each PRM classification and compared to structural and biological markers determined from microCT and histopathology of lung core samples. Whole-lung measurements of PRM-defined functional small airways disease (fSAD), which serves as a readout of BOS, were significantly elevated in BOS versus RAS patients (p = 0.01). At the core-level, PRM-defined parenchymal disease, a potential readout of RAS, was found to correlate to neutrophil and collagen I levels (p < 0.05). We demonstrate the relationship of structural and biological markers to the CT-based distribution and arrangement of PRM-derived readouts of BOS and RAS.


Assuntos
Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Pulmão , Aloenxertos , Biomarcadores , Bronquiolite Obliterante/diagnóstico por imagem , Humanos , Inflamação , Pulmão/diagnóstico por imagem , Transplante de Pulmão/efeitos adversos , Síndrome , Tomografia Computadorizada por Raios X/métodos
13.
Bone ; 143: 115615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32853850

RESUMO

Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (µCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with µCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.


Assuntos
Densidade Óssea , Imageamento por Ressonância Magnética , Animais , Biomarcadores , Feminino , Humanos , Minerais , Ovariectomia , Ratos , Microtomografia por Raio-X
14.
PLoS One ; 16(3): e0248902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760861

RESUMO

BACKGROUND: Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in limited efficacy for monitoring disease progression. OBJECTIVE: To investigate the effectiveness of a convolutional neural network (CNN) model for quantifying and monitoring AT, and to compare it with other quantitative AT measures obtained from threshold-based techniques. MATERIALS AND METHODS: Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely connected CNN (DN) was trained using AT segmentation maps generated from a personalized threshold-based method (PTM). Quantitative AT (QAT) values, presented as the relative volume of AT over the lungs, from the DN approach were compared to QAT values from the PTM method. Radiographic assessment, spirometric measures, and clinical scores were correlated to the DN QAT values using a linear mixed effects model. RESULTS: QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%, respectively, over a two-year period. Comparison of CNN model results to intensity-based measures demonstrated a systematic drop in the Dice coefficient over time (decreased from 0.86 ± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clinical scores for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was found to be less susceptible to variations in expiratory deflation levels than the threshold-based approach. CONCLUSION: The CNN model effectively delineated AT on expiratory CT scans, which provides an automated and objective approach for assessing and monitoring AT in CF patients.


Assuntos
Ar , Aprendizado Profundo , Expiração/fisiologia , Tomografia Computadorizada por Raios X , Criança , Feminino , Humanos , Masculino , Redes Neurais de Computação , Análise de Regressão , Testes de Função Respiratória
15.
IEEE Trans Image Process ; 28(4): 1705-1719, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30418909

RESUMO

Nonlocal texture similarity and local intensity smoothness are both essential for solving most image inpainting problems. In this paper, we propose a novel image inpainting algorithm that is capable of reproducing the underlying textural details using a nonlocal texture measure and also smoothing pixel intensity seamlessly in order to achieve natural-looking inpainted images. For matching texture, we propose a Gaussian-weighted nonlocal texture similarity measure to obtain multiple candidate patches for each target patch. To compute the pixel intensity, we apply the -trimmed mean filter to the candidate patches to inpaint the target patch pixel-by-pixel. The proposed algorithm is compared with four current image inpainting algorithms under different scenarios, including object removal, texture synthesis, and error concealment. Experimental results show that the proposed algorithm outperforms the existing algorithms when inpainting large missing regions in images with texture and geometric structures.

16.
Acta Biomater ; 88: 131-140, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797107

RESUMO

Glaucoma is the second leading cause of irreversible blindness in the world with a higher prevalence in those of African Descent (AD) and Hispanic Ethnicity (HE) than in those of European Descent (ED). The objective of this study was to investigate the pressure dependent biomechanical response of the lamina cribrosa (LC) in normal human donor tissues from these racioethnic backgrounds. Pressure inflation tests were performed on 24 human LCs (n = 9 AD, n = 6 ED, and n = 9 HE) capturing the second harmonic generation (SHG) signal of collagen at 5, 15, 30, and 45 mmHg from an anterior view. A non-rigid image registration technique was utilized to determine the 3D displacement field in each LC from which 3D Green strains were calculated. The peak shear strain in the superior quadrant of the LC in those of ED was significantly higher than in those of AD and HE (p-value = 0.005 & 0.034, respectively) where ED = 0.017 [IQR = 0.012-0.027], AD = 0.0002 [IQR = -0.001-0.007], HE = 0.0016 [IQR = -0.002-0.012]). There were also significant differences in the regional strain heterogeneity in those of AD and HE that were absent in those of ED. This work represents, to our knowledge, the first ex-vivo study identifying significant differences in the biomechanical response of the LC in populations at increased risk of glaucoma. Future work will be necessary to assess if and how these differences play a role in predisposing those of Hispanic Ethnicity and African Descent to the onset and/or progression of primary open angle glaucoma. STATEMENT OF SIGNIFICANCE: Glaucoma is the second leading cause of irreversible blindness in the world and occurs more frequently in those of African Descent and Hispanic Ethnicity than in those of European Descent. To date, there has been no ex-vivo study quantifying differences in the biomechanical response of the non-glaucomatous lamina cribrosa (LC) across these racioethnic backgrounds. In this work we report, for the first time, differences in the pressure dependent biomechanical response of LC across different racioethnic groups as quantified using nonlinear optical microscopy. This study lays the foundation for future work investigating if and how these differences may play a role in predisposing those at increased risk to the onset and/or progression of primary open angle glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Pressão Intraocular , Esclera , Estresse Mecânico , Idoso , Feminino , Glaucoma de Ângulo Aberto/patologia , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclera/patologia , Esclera/fisiopatologia
18.
IEEE Trans Biomed Eng ; 65(7): 1617-1629, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28252388

RESUMO

The lamina cribrosa (LC) is a connective tissue in the posterior eye with a complex mesh-like trabecular microstructure, through which all the retinal ganglion cell axons and central retinal vessels pass. Recent studies have demonstrated that changes in the structure of the LC correlate with glaucomatous damage. Thus, accurate segmentation and reconstruction of the LC is of utmost importance. This paper presents a new automated method for segmenting the microstructure of the anterior LC in the images obtained via multiphoton microscopy using a combination of ideas. In order to reduce noise, we first smooth the input image using a 4-D collaborative filtering scheme. Next, we enhance the beam-like trabecular microstructure of the LC using wavelet multiresolution analysis. The enhanced LC microstructure is then automatically extracted using a combination of histogram thresholding and graph-cut binarization. Finally, we use morphological area opening as a postprocessing step to remove the small and unconnected 3-D regions in the binarized images. The performance of the proposed method is evaluated using mutual overlap accuracy, Tanimoto index, F-score, and Rand index. Quantitative and qualitative results show that the proposed algorithm provides improved segmentation accuracy and computational efficiency compared to the other recent algorithms.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Esclera/diagnóstico por imagem , Análise de Ondaletas , Algoritmos , Humanos , Retina/citologia , Retina/fisiologia , Esclera/fisiologia
19.
IEEE Trans Med Imaging ; 35(7): 1753-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26886972

RESUMO

Accurate detection of individual cell nuclei in microscopy images is an essential and fundamental task for many biological studies. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. Manual detection of individual cell nuclei by visual inspection is time consuming, and prone to induce subjective bias. This makes automatic detection of cell nuclei essential for large-scale, objective studies of cell cultures. Blur, clutter, bleed-through, imaging noise and touching and partially overlapping nuclei with varying sizes and shapes make automated detection of individual cell nuclei a challenging task using image analysis. In this paper we propose a new automated method for fast and robust detection of individual cell nuclei based on their radial symmetric nature in fluorescence in-situ hybridization (FISH) images obtained via confocal microscopy. The main contributions are two-fold. 1) This work presents a more accurate cell nucleus detection system using the fast radial symmetry transform (FRST). 2) The proposed cell nucleus detection system is robust against most occlusions and variations in size and moderate shape deformations. We evaluate the performance of the proposed algorithm using precision/recall rates, Fß-score and root-mean-squared distance (RMSD) and show that our algorithm provides improved detection accuracy compared to existing algorithms.


Assuntos
Núcleo Celular , Algoritmos , Humanos , Microscopia Confocal , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa