Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 739654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267942

RESUMO

Rice bean is a less-known underutilized legume crop with a high nutritional value among members of the Vigna family. As an initiative to compose rice bean (Vigna umbellata) genomic resource, the size of 414 mega-base pairs with an estimated identification of 31,276 high confidence index genes via 15,521 scaffolds generated from Illumina and PacBio platform 30X coverage data has achieved 96.08% functional coverage data from Illumina and PacBio platform. Rice bean genome assembly was found to be exquisitely close to Vigna angularis (experimental control/outgroup), Vigna radiata, and Vigna unguiculata, however, Vigna angularis being the closest. The assembled genome was further aligned with 31 leguminous plants (13 complete genomes and 18 partial genomes), by collinearity block mapping. Further, we predicted similar discriminant results by complete coding sequence (CDS) alignment. In contrast, 17 medically influential genomes from the National Institute of General Medical Sciences-National Institutes of Health NIGMS-NIH, when compared to rice bean assembly for LCB clusters, led to the identification of more than 18,000 genes from the entire selected medicinal genomes. Empirical construction of all genome comparisons revealed symplesiomorphic character in turn uncovering the lineage of genetic and functional features of rice beans. Significantly, we found deserving late-flowering genes, palatably indexed uncommon genes that regulate various metabolite pathways, related to abiotic and biotic stress pathways and those that are specific to photoperiod and disease resistance and so on. Therefore, the findings from this report address the genomic value of rice bean to be escalated via breeding by allied and applied approaches.

2.
Methods Mol Biol ; 2238: 81-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471326

RESUMO

Developing an efficient and reproducible plant transformation protocol relies on callus induction and plant regeneration, which is prerequisite for genetic enhancement of crops, especially rice. The present study has been carried out in order to establish a genotype-independent regeneration and biolistic transformation protocol for rice varieties. Putative transgenic rice lines were confirmed by PCR analysis, DNA sequencing, and Southern analysis. The transformation protocol reported here is relatively simple and consistent and can be exploited in future biotechnological investigations particularly for gene transformation studies.


Assuntos
Técnicas de Transferência de Genes , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regeneração , Transformação Genética , Transgenes/fisiologia , Genótipo , Oryza/genética , Plantas Geneticamente Modificadas/genética
3.
J Biomol Struct Dyn ; 38(12): 3633-3647, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31621500

RESUMO

Transcription factor NAM-B1 has a major role in the process of senescence, which results in higher Fe and Zn concentrations in grains of wild wheat (T. durum; Td). The absence of the wild type NAMB1 in T. aestivum (Ta), one of the cardinal crops essential for more than 1/3rd of the global population, affects Fe and Zn remobilisation to the maturing grain from the flag leaf resulting in lesser micronutrient bioavailability. The cardinal difference in the NAMB1 gene between the two species is the absence of +1 bp allele in Ta. Insilico studies using NAMB1 from Td and Ta was performed to explore the variation in the interaction with the conserved cis-element DNA motif (CATGTG) as both the proteins share the same domain, but there are no in silico studies reported of these proteins. The secondary structure, 3D-modelling of the proteins, DNA-protein docking and dynamics have computed by Schrodinger Prime Suite. Predicted secondary structures were energy minimised using Macromodel and docking was performed based on binding energy and hydrogen bonds. Molecular dynamics simulation of NAMB1-Ta and NAMB1-Td individually and with the cis-element motif, performed for 100 ns, revealed significant variations in the protein-DNA interaction in Ta. This work provides the modelled 3D-interaction profile caused by a single bp frameshift mutation in understanding the difference in function between NAMB1 orthologs due to lack of NAC domain. The overall computational analysis reveals that NAMB1-Ta and NAMB1-Td proteins display a good amount of dissimilarity in their structure, dynamics and DNA-binding characteristics.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Plantas , Triticum , DNA , Domesticação , Mutação da Fase de Leitura , Proteínas de Plantas/genética , Triticum/genética
4.
Front Plant Sci ; 10: 801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354748

RESUMO

Genome engineering by site-specific nucleases enables reverse genetics and targeted editing of genomes in an efficacious manner. Contemporary revolutionized progress in targeted-genome engineering technologies based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-related RNA-guided endonucleases facilitate coherent interrogation of crop genome function. Evolved as an innate component of the adaptive immune response in bacterial and archaeal systems, CRISPR/Cas system is now identified as a versatile molecular tool that ensures specific and targeted genome modification in plants. Applications of this genome redaction tool-kit include somatic genome editing, rectification of genetic disorders or gene therapy, treatment of infectious diseases, generation of animal models, and crop improvement. We review the utilization of these synthetic nucleases as precision, targeted-genome editing platforms with the inherent potential to accentuate basic science "strengths and shortcomings" of gene function, complement plant breeding techniques for crop improvement, and charter a knowledge base for effective use of editing technology for ever-increasing agricultural demands. Furthermore, the emerging importance of Cpf1, Cas9 nickase, C2c2, as well as other innovative candidates that may prove more effective in driving novel applications in crops are also discussed. The mined data has been prepared as a library and opened for public use at www.lipre.org.

5.
Biochem Biophys Rep ; 12: 98-107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955797

RESUMO

Accurate characterization of melanin using analytical methodologies has proved to be difficult due to its heterogeneity, insolubility in wide pH and broad range of solvents. The present study was undertaken to characterize melanin extracted from an environmental Aspergillus fumigatus AFGRD105 by studying its genes, chemical properties and spectral data. A gene based approach to confirm the type of melanin carried out indicated the extracted melanin to be of the dihydroxynaphthalene type. On comparison with synthetic melanin, UV-Vis and IR spectra of the extracted melanin revealed characteristic peaks that can be further used for confirmation of DHN-melanin extracted from any source. Solid state 13C NMR spectroscopy established the presence of the hydroxyl-naphthalene moiety and validated the results obtained by genetic analysis. The correct assignment of the observed spectral frequency characteristic of functional groups can be further adapted in future works that deal with binding capacities and biomolecule systems involving melanin.

6.
AMB Express ; 5(1): 72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26597959

RESUMO

Melanins are indolic polymers produced by many genera included among plants, animals and microorganisms and targeted mainly for their wide range of applications in cosmetics, agriculture and medicine. An approach to analyse the cumulative effect of parameters for enhanced melanin production was carried out using response surface methodology. In this present study, optimization of media and process parameters for melanin production from Aspergillus fumigatus AFGRD105 (GenBank: JX041523; NFCCI accession number: 3826) was carried out by an initial univariate approach followed by statistical response surface methodology. The univariate approach was used to standardise the parameters that can be used for the 12-run Plackett-Burman design that is used for screening for critical parameters. Further optimization of parameters was analysed using Box-Behnken design. The optimum conditions observed were temperature, moisture and sodium dihydrogen phosphate concentration. The yield of every run of both designs were confirmed to be melanin by laboratory tests of analysis in the presence of acids, base and water. This is the first report confirming an increase in melanin production A. fumigatus AFGRD105 without the addition of costly additives.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa