Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Neuroimage ; 202: 116124, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473351

RESUMO

Transcranial alternating current stimulation (tACS) is a noninvasive method used to modulate activity of superficial brain regions. Deeper and more steerable stimulation could potentially be achieved using transcranial temporal interference stimulation (tTIS): two high-frequency alternating fields interact to produce a wave with an envelope frequency in the range thought to modulate neural activity. Promising initial results have been reported for experiments with mice. In this study we aim to better understand the electric fields produced with tTIS and examine its prospects in humans through simulations with murine and human head models. A murine head finite element model was used to simulate previously published experiments of tTIS in mice. With a total current of 0.776 mA, tTIS electric field strengths up to 383 V/m were reached in the modeled mouse brain, affirming experimental results indicating that suprathreshold stimulation is possible in mice. Using a detailed anisotropic human head model, tTIS was simulated with systematically varied electrode configurations and input currents to investigate how these parameters influence the electric fields. An exhaustive search with 88 electrode locations covering the entire head (146M current patterns) was employed to optimize tTIS for target field strength and focality. In all analyses, we investigated maximal effects and effects along the predominant orientation of local neurons. Our results showed that it was possible to steer the peak tTIS field by manipulating the relative strength of the two input fields. Deep brain areas received field strengths similar to conventional tACS, but with less stimulation in superficial areas. Maximum field strengths in the human model were much lower than in the murine model, too low to expect direct stimulation effects. While field strengths from tACS were slightly higher, our results suggest that tTIS is capable of producing more focal fields and allows for better steerability. Finally, we present optimal four-electrode current patterns to maximize tTIS in regions of the pallidum (0.37 V/m), hippocampus (0.24 V/m) and motor cortex (0.57 V/m).


Assuntos
Encéfalo , Simulação por Computador , Modelos Biológicos , Estimulação Transcraniana por Corrente Contínua , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Transcraniana por Corrente Contínua/normas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38498738

RESUMO

Transcranial magnetic stimulation (TMS) is often applied to the motor cortex to stimulate a collection of motor evoked potentials (MEPs) in groups of peripheral muscles. The causal interface between TMS and MEP is the selective activation of neurons in the motor cortex; moving around the TMS 'spot' over the motor cortex causes different MEP responses. A question of interest is whether a collection of MEP responses can be used to identify the stimulated locations on the cortex, which could potentially be used to then place the TMS coil to produce chosen sets of MEPs. In this work we leverage our previous report on a 3D convolutional neural network (CNN) architecture that predicted MEPs from the induced electric field, to tackle an inverse imaging task in which we start with the MEPs and estimate the stimulated regions on the motor cortex. We present and evaluate five different inverse imaging CNN architectures, both conventional and generative, in terms of several measures of reconstruction accuracy. We found that one architecture, which we propose as M2M-InvNet, consistently achieved the best performance.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia/métodos
3.
Comput Biol Med ; 152: 106407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521358

RESUMO

BACKGROUND: Computational biomedical simulations frequently contain parameters that model physical features, material coefficients, and physiological effects, whose values are typically assumed known a priori. Understanding the effect of variability in those assumed values is currently a topic of great interest. A general-purpose software tool that quantifies how variation in these parameters affects model outputs is not broadly available in biomedicine. For this reason, we developed the 'UncertainSCI' uncertainty quantification software suite to facilitate analysis of uncertainty due to parametric variability. METHODS: We developed and distributed a new open-source Python-based software tool, UncertainSCI, which employs advanced parameter sampling techniques to build polynomial chaos (PC) emulators that can be used to predict model outputs for general parameter values. Uncertainty of model outputs is studied by modeling parameters as random variables, and model output statistics and sensitivities are then easily computed from the emulator. Our approaches utilize modern, near-optimal techniques for sampling and PC construction based on weighted Fekete points constructed by subsampling from a suitably randomized candidate set. RESULTS: Concentrating on two test cases-modeling bioelectric potentials in the heart and electric stimulation in the brain-we illustrate the use of UncertainSCI to estimate variability, statistics, and sensitivities associated with multiple parameters in these models. CONCLUSION: UncertainSCI is a powerful yet lightweight tool enabling sophisticated probing of parametric variability and uncertainty in biomedical simulations. Its non-intrusive pipeline allows users to leverage existing software libraries and suites to accurately ascertain parametric uncertainty in a variety of applications.


Assuntos
Coração , Software , Incerteza , Simulação por Computador , Bioengenharia
4.
Sci Rep ; 13(1): 1636, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717682

RESUMO

Increasing the intensity of tumor treating fields (TTF) within a tumor bed improves clinical efficacy, but reaching sufficiently high field intensities to achieve growth arrest remains challenging due in part to the insulating nature of the cranium. Using MRI-derived finite element models (FEMs) and simulations, we optimized an exhaustive set of intracranial electrode locations to obtain maximum TTF intensities in three clinically challenging high-grade glioma (HGG) cases (i.e., thalamic, left temporal, brainstem). Electric field strengths were converted into therapeutic enhancement ratios (TER) to evaluate the predicted impact of stimulation on tumor growth. Concurrently, conventional transcranial configurations were simulated/optimized for comparison. Optimized intracranial TTF were able to achieve field strengths that have previously been shown capable of inducing complete growth arrest, in 98-100% of the tumor volumes using only 0.54-0.64 A current. The reconceptualization of TTF as a targeted, intracranial therapy has the potential to provide a meaningful survival benefit to patients with HGG and other brain tumors, including those in surgically challenging, deep, or anatomically eloquent locations which may preclude surgical resection. Accordingly, such an approach may ultimately represent a paradigm shift in the use of TTFs for the treatment of brain cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética
5.
PLoS One ; 18(6): e0286465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352290

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is widely used in both research and clinical settings to modulate human brain function and behavior through the engagement of the mechanisms of plasticity. Based upon experiments using single-pulse TMS as a probe, the physiologic mechanism of these effects is often assumed to be via changes in cortical excitability, with 10 Hz rTMS increasing and 1 Hz rTMS decreasing the excitability of the stimulated region. However, the reliability and reproducibility of these rTMS protocols on cortical excitability across and within individual subjects, particularly in comparison to robust sham stimulation, have not been systematically examined. OBJECTIVES: In a cohort of 28 subjects (39 ± 16 years), we report the first comprehensive study to (1) assess the neuromodulatory effects of traditional 1 Hz and 10 Hz rTMS on corticospinal excitability against both a robust sham control, and two other widely used patterned rTMS protocols (intermittent theta burst stimulation, iTBS; and continuous theta burst stimulation, cTBS), and (2) determine the reproducibility of all rTMS protocols across identical repeat sessions. RESULTS: At the group level, neither 1 Hz nor 10 Hz rTMS significantly modulated corticospinal excitability. 1 Hz and 10 Hz rTMS were also not significantly different from sham and both TBS protocols. Reproducibility was poor for all rTMS protocols except for sham. Importantly, none of the real rTMS and TBS protocols demonstrated greater neuromodulatory effects or reproducibility after controlling for potential experimental factors including baseline corticospinal excitability, TMS coil deviation and the number of individual MEP trials. CONCLUSIONS: These results call into question the effectiveness and reproducibility of widely used rTMS techniques for modulating corticospinal excitability, and suggest the need for a fundamental rethinking regarding the potential mechanisms by which rTMS affects brain function and behavior in humans.


Assuntos
Excitabilidade Cortical , Córtex Motor , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 763-766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891402

RESUMO

Modeling biological dynamical systems is challenging due to the interdependence of different system components, some of which are not fully understood. To fill existing gaps in our ability to mechanistically model physiological systems, we propose to combine neural networks with physics-based models. Specifically, we demonstrate how we can approximate missing ordinary differential equations (ODEs) coupled with known ODEs using Bayesian filtering techniques to train the model parameters and simultaneously estimate dynamic state variables. As a study case we leverage a well-understood model for blood circulation in the human retina and replace one of its core ODEs with a neural network approximation, representing the case where we have incomplete knowledge of the physiological state dynamics. Results demonstrate that state dynamics corresponding to the missing ODEs can be approximated well using a neural network trained using a recursive Bayesian filtering approach in a fashion coupled with the known state dynamic differential equations. This demonstrates that dynamics and impact of missing state variables can be captured through joint state estimation and model parameter estimation within a recursive Bayesian state estimation (RBSE) framework. Results also indicate that this RBSE approach to training the NN parameters yields better outcomes (measurement/state estimation accuracy) than training the neural network with backpropagation through time in the same setting.


Assuntos
Algoritmos , Redes Neurais de Computação , Teorema de Bayes , Humanos , Modelos Biológicos , Física
7.
Front Neurosci ; 15: 691701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408621

RESUMO

Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32818205

RESUMO

A deep neural network (DNN) that can reliably model muscle responses from corresponding brain stimulation has the potential to increase knowledge of coordinated motor control for numerous basic science and applied use cases. Such cases include the understanding of abnormal movement patterns due to neurological injury from stroke, and stimulation based interventions for neurological recovery such as paired associative stimulation. In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation. We discuss the rationale behind the different modeling approaches and architectures, and contrast their results. Additionally, to obtain a comparative insight of the trade-o between complexity and performance analysis, we explore different techniques, including the extension of two classical information criteria for M2M-Net. Finally, we find that the model analogous to mapping the motor cortex stimulation to a combination of direct and synergistic connection to the muscles performs the best, when the neural response profile is used at the input.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36845870

RESUMO

Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.

10.
RNA ; 13(12): 2202-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17959930

RESUMO

All known guanine-sensing riboswitches regulate gene expression by specifically binding to guanine (G) or related analogs with high affinity to switch off transcription. The aptamers of this class of riboswitches are characterized by three helices (P1-P3), surrounding a central core of phylogenetically conserved nucleotides and a long-range loop-loop interaction. To gain more insight into the switching mechanism, we present here a comparison between the solution-state structures of the G-free and G-bound forms of the guanine aptamer from the xpt-pbuX operon of Bacillus subtilis, as derived from NMR chemical shifts and magnetic-field-induced residual dipolar couplings. The high-resolution NMR analysis shows the G-free aptamer is highly structured with parallel P2 and P3 helices and the long-range loop-loop interaction already present, implying that the structure is largely preformed to bind the ligand. Structural changes upon guanine binding are found to be localized to the central core. In the free state, the G-quadruple interaction and two base pairs of the P1 stem flanking the central core appear to be largely disordered. The ligand thus binds via a combined predetermined-induced fit mechanism, involving a previously unstructured five-residue loop of the J2-3 junction that folds over the ligand. These limited additional interactions within a preorganized setting possibly explain how the aptamer rapidly responds to ligand binding, which is necessary to switch the structural state of the expression platform within a narrow time frame before the RNA polymerase escapes the 5'-UTR.


Assuntos
Guanina , RNA Bacteriano/química , Sequências Reguladoras de Ácido Ribonucleico , Adenina/química , Adenina/metabolismo , Aptâmeros de Nucleotídeos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Pareamento de Bases , Sequência de Bases , Cátions Bivalentes/farmacologia , Guanina/química , Guanina/metabolismo , Ligantes , Magnésio/farmacologia , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Óperon , RNA Bacteriano/efeitos dos fármacos , RNA Bacteriano/genética
13.
IEEE Trans Neural Syst Rehabil Eng ; 22(3): 441-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24760939

RESUMO

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve the technique, finite element models are used to simulate tDCS of the human brain. With the detailed anisotropic head model presented in this study, we provide accurate predictions of tDCS in the human brain for six of the practically most-used setups in clinical and cognitive research, targeting the primary motor cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, occipital cortex, and cerebellum. We present the resulting electric field strengths in the complete brain and introduce new methods to evaluate the effectivity in the target area specifically, where we have analyzed both the strength and direction of the field. For all cerebral targets studied, the currently accepted configurations produced sub-optimal field strengths. The configuration for cerebellum stimulation produced relatively high field strengths in its target area, but it needs higher input currents than cerebral stimulation does. This study suggests that improvements in the effects of transcranial direct current stimulation are achievable.


Assuntos
Cabeça , Estimulação Transcraniana por Corrente Contínua/métodos , Anisotropia , Encéfalo/fisiologia , Simulação por Computador , Imagem de Tensor de Difusão , Eletrodos , Humanos , Processamento de Imagem Assistida por Computador , Modelos Biológicos
14.
IEEE Trans Neural Syst Rehabil Eng ; 21(3): 346-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22855232

RESUMO

In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer approximations. We simulated direct current stimulation for a range of conductivity values and investigated differences in the resulting current densities. Our results demonstrate that both approximation methods perform well, provided that the optimal conductivity values are used. We found that for both the anisotropic and the isotropic approximations the optimal conductivity values are largely dictated by the equivalent radial conductivity of the three-layered skull.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Crânio/fisiologia , Estimulação Magnética Transcraniana/métodos , Potenciais de Ação/efeitos da radiação , Animais , Encéfalo/efeitos da radiação , Simulação por Computador , Condutividade Elétrica , Campos Eletromagnéticos , Humanos , Rede Nervosa/efeitos da radiação , Neurônios/efeitos da radiação , Crânio/efeitos da radiação
15.
Artigo em Inglês | MEDLINE | ID: mdl-22254724

RESUMO

In a tDCS model study, the accuracy of isotropic and anisotropic single-layer approximations to the actual three-layered skull is evaluated. For both approximation models, the average difference in brain current density with respect to the layered skull model are shown to be small. We conclude that both approximations can be used to accurately compute the current density in the brain, provided that the radial conductivity in the model matches the effective radial conductivity of the three-layered skull.


Assuntos
Encéfalo/fisiologia , Modelos Biológicos , Radiometria/métodos , Crânio/fisiologia , Estimulação Magnética Transcraniana/métodos , Simulação por Computador , Humanos , Doses de Radiação
16.
PLoS One ; 6(6): e20017, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698288

RESUMO

Recent studies suggest that binocular rivalry at stimulus onset, so called onset rivalry, differs from rivalry during sustained viewing. These observations raise the interesting question whether there is a relation between onset rivalry and rivalry in the presence of eye movements. We therefore studied binocular rivalry when stimuli jumped from one visual hemifield to the other, either through a saccade or through a passive stimulus displacement, and we compared rivalry after such displacements with onset and sustained rivalry. We presented opponent motion, orthogonal gratings and face/house stimuli through a stereoscope. For all three stimulus types we found that subjects showed a strong preference for stimuli in one eye or one hemifield (Experiment 1), and that these subject-specific biases did not persist during sustained viewing (Experiment 2). These results confirm and extend previous findings obtained with gratings. The results from the main experiment (Experiment 3) showed that after a passive stimulus jump, switching probability was low when the preferred eye was dominant before a stimulus jump, but when the non-preferred eye was dominant beforehand, switching probability was comparatively high. The results thus showed that dominance after a stimulus jump was tightly related to eye dominance at stimulus onset. In the saccade condition, however, these subject-specific biases were systematically reduced, indicating that the influence of saccades can be understood from a systematic attenuation of the subjects' onset rivalry biases. Taken together, our findings demonstrate a relation between onset rivalry and rivalry after retinal shifts and involvement of extra-retinal signals in binocular rivalry.


Assuntos
Estimulação Luminosa , Movimentos Sacádicos , Visão Binocular , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa