Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Biotechnol J ; 22(3): 555-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050335

RESUMO

The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.


Assuntos
Endosperma , Triticum , Endosperma/metabolismo , Triticum/metabolismo , Proteoma/metabolismo , Proteômica , Antivirais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível , Amido/metabolismo , Açúcares/metabolismo
2.
Nucleic Acids Res ; 50(W1): W551-W559, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609982

RESUMO

PaintOmics is a web server for the integrative analysis and visualisation of multi-omics datasets using biological pathway maps. PaintOmics 4 has several notable updates that improve and extend analyses. Three pathway databases are now supported: KEGG, Reactome and MapMan, providing more comprehensive pathway knowledge for animals and plants. New metabolite analysis methods fill gaps in traditional pathway-based enrichment methods. The metabolite hub analysis selects compounds with a high number of significant genes in their neighbouring network, suggesting regulation by gene expression changes. The metabolite class activity analysis tests the hypothesis that a metabolic class has a higher-than-expected proportion of significant elements, indicating that these compounds are regulated in the experiment. Finally, PaintOmics 4 includes a regulatory omics module to analyse the contribution of trans-regulatory layers (microRNA and transcription factors, RNA-binding proteins) to regulate pathways. We show the performance of PaintOmics 4 on both mouse and plant data to highlight how these new analysis features provide novel insights into regulatory biology. PaintOmics 4 is available at https://paintomics.org/.


Assuntos
MicroRNAs , Multiômica , Animais , Camundongos , Bases de Dados Factuais , MicroRNAs/genética , Fatores de Transcrição , Biologia Computacional/métodos
3.
Plant J ; 110(2): 529-547, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092714

RESUMO

The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Estilbenos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Chiquímico , Estilbenos/metabolismo
4.
Virol J ; 20(1): 53, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973781

RESUMO

BACKGROUND: Hyperimmune convalescent COVID-19 plasma (CCP) containing anti-SARS-CoV-2 neutralizing antibodies (NAbs) was proposed as a therapeutic option for patients early in the new coronavirus disease pandemic. The efficacy of this therapy depends on the quantity of neutralizing antibodies (NAbs) in the CCP units, with titers ≥ 1:160 being recommended. The standard neutralizing tests (NTs) used for determining appropriate CCP donors are technically demanding and expensive and take several days. We explored whether they could be replaced by high-throughput serology tests and a set of available clinical data. METHODS: Our study included 1302 CCP donors after PCR-confirmed COVID-19 infection. To predict donors with high NAb titers, we built four (4) multiple logistic regression models evaluating the relationships of demographic data, COVID-19 symptoms, results of various serological testing, the period between disease and donation, and COVID-19 vaccination status. RESULTS: The analysis of the four models showed that the chemiluminescent microparticle assay (CMIA) for the quantitative determination of IgG Abs to the RBD of the S1 subunit of the SARS-CoV-2 spike protein was enough to predict the CCP units with a high NAb titer. CCP donors with respective results > 850 BAU/ml SARS-CoV-2 IgG had a high probability of attaining sufficient NAb titers. Including additional variables such as donor demographics, clinical symptoms, or time of donation into a particular predictive model did not significantly increase its sensitivity and specificity. CONCLUSION: A simple quantitative serological determination of anti-SARS-CoV-2 antibodies alone is satisfactory for recruiting CCP donors with high titer NAbs.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , Soroterapia para COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G , Imunização Passiva/métodos
5.
BMC Genomics ; 22(1): 360, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006221

RESUMO

BACKGROUND: Rosaceae species are economically highly relevant crops. Their cultivation systems are constrained by phytopathogens causing severe losses. Plants respond to invading pathogens through signaling mechanisms, a component of which are of them being plant elicitor peptides (Peps). Exogenous application of Peps activates defense mechanisms and reduces the symptoms of pathogen infection in various pathosystems. We have previously identified the Rosaceae Peps and showed, in an ex vivo system, that their topical application efficiently enhanced resistance to the bacterial pathogen Xanthomonas arboricola pv. pruni (Xap). RESULTS: Here we demonstrate the effectiveness of Prunus persica peptides PpPep1 and PpPep2 in protecting peach plants in vivo at nanomolar doses, with 40% reduction of the symptoms following Xap massive infection. We used deep sequencing to characterize the transcriptomic response of peach plants to preventive treatment with PpPep1 and PpPep2. The two peptides induced highly similar massive transcriptomic reprogramming in the plant. One hour, 1 day and 2 days after peptide application there were changes in expression in up to 8% of peach genes. We visualized the transcriptomics dynamics in a background knowledge network and detected the minor variations between plant responses to PpPep1 and PpPep2, which might explain their slightly different protective effects. By designing a P. persica Pep background knowledge network, comparison of our data and previously published immune response datasets was possible. CONCLUSIONS: Topical application of P. persica Peps mimics the PTI natural response and protects plants against massive Xap infection. This makes them good candidates for deployment of natural, targeted and environmental-friendly strategies to enhance resistance in Prunus species and prevent important biotic diseases.


Assuntos
Prunus persica , Peptídeos , Doenças das Plantas/genética , Prunus persica/genética , Transcriptoma , Xanthomonas
6.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805429

RESUMO

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with 'Candidatus Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with 'Ca. P. solani' in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.


Assuntos
Interações Hospedeiro-Patógeno/genética , Phytoplasma/patogenicidade , RNA Mensageiro/genética , Vitis/genética , Vitis/microbiologia , Parede Celular/genética , Parede Celular/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas , Análise de Sequência de RNA , Estresse Fisiológico/genética , Vitis/crescimento & desenvolvimento
7.
Bioinformatics ; 35(24): 5385-5388, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31233141

RESUMO

SUMMARY: Biomine Explorer is a web application that enables interactive exploration of large heterogeneous biological networks constructed from selected publicly available biological knowledge sources. It is built on top of Biomine, a system which integrates cross-references from several biological databases into a large heterogeneous probabilistic network. Biomine Explorer offers user-friendly interfaces for search, visualization, exploration and manipulation as well as public and private storage of discovered subnetworks with permanent links suitable for inclusion into scientific publications. A JSON-based web API for network search queries is also available for advanced users. AVAILABILITY AND IMPLEMENTATION: Biomine Explorer is implemented as a web application, which is publicly available at https://biomine.ijs.si. Registration is not required but registered users can benefit from additional features such as private network repositories.


Assuntos
Software , Bases de Dados Factuais , Internet
8.
New Phytol ; 227(1): 260-273, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171029

RESUMO

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.


Assuntos
Fenômica , Plantas , Plantas/genética
9.
Plant Physiol ; 178(1): 488-499, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934298

RESUMO

To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.


Assuntos
Etilenos/metabolismo , Redes Reguladoras de Genes , Modelos Genéticos , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Solanum tuberosum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal/métodos , Imunidade Vegetal/genética , Solanum tuberosum/metabolismo
10.
Plant J ; 87(3): 318-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27136060

RESUMO

Theobroma cacao and its popular product, chocolate, are attracting attention due to potential health benefits including antioxidative effects by polyphenols, anti-depressant effects by high serotonin levels, inhibition of platelet aggregation and prevention of obesity-dependent insulin resistance. The development of cacao seeds during fruit ripening is the most crucial process for the accumulation of these compounds. In this study, we analyzed the primary and the secondary metabolome as well as the proteome during Theobroma cacao cv. Forastero seed development by applying an integrative extraction protocol. The combination of multivariate statistics and mathematical modelling revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways. Tricarboxylic acid (TCA) cycle and aromatic amino acid metabolism dominated during the early developmental stages (stages 1 and 2; cell division and expansion phase). This was accompanied with a significant shift of proteins from phenylpropanoid metabolism to flavonoid biosynthesis. At stage 3 (reserve accumulation phase), metabolism of sucrose switched from hydrolysis into raffinose synthesis. Lipids as well as proteins involved in lipid metabolism increased whereas amino acids and N-phenylpropenoyl amino acids decreased. Purine alkaloids, polyphenols, and raffinose as well as proteins involved in abiotic and biotic stress accumulated at stage 4 (maturation phase) endowing cacao seeds the characteristic astringent taste and resistance to stress. In summary, metabolic key points of cacao seed development comprise the sequential coordination of primary metabolites, phenylpropanoid, N-phenylpropenoyl amino acid, serotonin, lipid and polyphenol metabolism thereby covering the major compound classes involved in cacao aroma and health benefits.


Assuntos
Cacau/metabolismo , Polifenóis/metabolismo , Sementes/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
11.
Nucleic Acids Res ; 42(Database issue): D1167-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194592

RESUMO

GoMapMan (http://www.gomapman.org) is an open web-accessible resource for gene functional annotations in the plant sciences. It was developed to facilitate improvement, consolidation and visualization of gene annotations across several plant species. GoMapMan is based on the MapMan ontology, organized in the form of a hierarchical tree of biological concepts, which describe gene functions. Currently, genes of the model species Arabidopsis and three crop species (potato, tomato and rice) are included. The main features of GoMapMan are (i) dynamic and interactive gene product annotation through various curation options; (ii) consolidation of gene annotations for different plant species through the integration of orthologue group information; (iii) traceability of gene ontology changes and annotations; (iv) integration of external knowledge about genes from different public resources; and (v) providing gathered information to high-throughput analysis tools via dynamically generated export files. All of the GoMapMan functionalities are openly available, with the restriction on the curation functions, which require prior registration to ensure traceability of the implemented changes.


Assuntos
Bases de Dados Genéticas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Gráficos por Computador , Internet , Proteínas de Plantas/genética , Integração de Sistemas
12.
BMC Genomics ; 16: 716, 2015 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-26386579

RESUMO

BACKGROUND: Potato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVY(NTN) strain. We focused on the dynamics of the primary metabolism-related processes during PVY(NTN) infection. RESULTS: A comprehensive analysis of the dynamic changes in primary metabolism was performed, which included whole transcriptome analysis, nontargeted proteomics, and photosynthetic activity measurements in potato cv. Désirée and its transgenic counterpart depleted for accumulation of salicylic acid (NahG-Désirée). Faster multiplication of virus occurred in the NahG-Désirée, with these plants developing strong disease symptoms. We show that while the dynamics of responses at the transcriptional level are extensive and bimodal, this is only partially translated to the protein level, and to the final functional outcome. Photosynthesis-related genes are transiently induced before viral multiplication is detected and it is down-regulated later on. This is reflected as a deficiency of the photosynthetic apparatus at the onset of viral multiplication only. Interestingly, specific and constant up-regulation of some RuBisCO transcripts was detected in Désirée plants, which might be important, as these proteins have been shown to interact with viral proteins. In SA-deficient and more sensitive NahG-Désirée plants, consistent down-regulation of photosynthesis-related genes was detected. A constant reduction in the photochemical efficiency from the onset of viral multiplication was identified; in nontransgenic plants this decrease was only transient. The transient reduction in net photosynthetic rate occurred in both genotypes with the same timing, and coincided with changes in stomatal conductivity. CONCLUSIONS: Down-regulation of photosynthesis-related gene expression and decreased photosynthetic activity is in line with other studies that have reported the effects of biotic stress on photosynthesis. Here, we additionally detected induction of light-reaction components in the early stages of PVY(NTN) infection of tolerant interaction. As some of these components have already been shown to interact with viral proteins, their overproduction might contribute to the absence of symptoms in cv. Désirée.


Assuntos
Resistência à Doença , Fotossíntese , Proteínas de Plantas/genética , Potyvirus/fisiologia , Solanum tuberosum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Potyvirus/genética , Ácido Salicílico/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Replicação Viral
13.
Anal Bioanal Chem ; 406(26): 6513-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173868

RESUMO

Here we report on the first assessment of droplet digital PCR (ddPCR) for detection and absolute quantification of two quarantine plant pathogenic bacteria that infect many species of the Rosaceae and Solanaceae families: Erwinia amylovora and Ralstonia solanacearum. An open-source R script was written for the ddPCR data analysis. Analysis of a set of samples with known health status aided the assessment and selection of different threshold settings (QuantaSoft analysis, definetherain pipeline and manual threshold), which led to optimal diagnostic specificity. The interpretation of the E. amylovora ddPCR was straightforward, and the analysis approach had little influence on the final results and the concentrations determined. The sensitivity and linear range were similar to those for real-time PCR (qPCR), for the analysis of both bacterial suspensions and plant material, making ddPCR a viable choice when both detection and quantification are desired. With the R. solanacearum ddPCR, the use of a high global threshold was necessary to exclude false-positive reactions that are sometimes observed in healthy plant material. ddPCR significantly improved the analytical sensitivity over that of qPCR, and improved the detection of low concentrations of R. solanacearum in potato tuber samples. Accurate and rapid absolute quantification of both of these bacteria in pure culture was achieved by direct ddPCR. Our data confirm the suitability of these ddPCR assays for routine detection and quantification of plant pathogens and for preparation of defined in-house reference materials with known target concentrations.


Assuntos
DNA Bacteriano/isolamento & purificação , Erwinia amylovora/isolamento & purificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Ralstonia solanacearum/isolamento & purificação , Rosaceae/microbiologia , Solanum tuberosum/microbiologia , DNA Bacteriano/genética , Erwinia amylovora/genética , Limite de Detecção , Ralstonia solanacearum/genética
14.
Front Plant Sci ; 15: 1352253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919818

RESUMO

Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly annotated genes. Here, we unify the recent potato double monoploid v4 and v6 gene models by developing an automated merging protocol, resulting in a Unified poTato genome model (UniTato). We subsequently established an Apollo genome browser (unitato.nib.si) that enables public access to UniTato and further community-based curation. We demonstrate how the UniTato resource can help resolve problems with missing or misplaced genes and can be used to update or consolidate a wider set of gene models or genome information. The automated protocol, genome annotation files, and a comprehensive translation table are provided at github.com/NIB-SI/unitato.

15.
Plant Commun ; 5(6): 100920, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38616489

RESUMO

Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.


Assuntos
Plantas , Estresse Fisiológico , Biologia de Sistemas , Plantas/genética , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Transdução de Sinais/genética , Bases de Dados Factuais
17.
Front Toxicol ; 4: 815754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295214

RESUMO

The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.

18.
Sci Data ; 9(1): 685, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357404

RESUMO

We developed pISA-tree, a straightforward and flexible data management solution for organisation of life science project-associated research data and metadata. pISA-tree was initiated by end-user requirements thus its strong points are practicality and low maintenance cost. It enables on-the-fly creation of enriched directory tree structure (project/Investigation/Study/Assay) based on the ISA model, in a standardised manner via consecutive batch files. Templates-based metadata is generated in parallel at each level enabling guided submission of experiment metadata. pISA-tree is complemented by two R packages, pisar and seekr. pisar facilitates integration of pISA-tree datasets into bioinformatic pipelines and generation of ISA-Tab exports. seekr enables synchronisation with the FAIRDOMHub repository. Applicability of pISA-tree was demonstrated in several national and international multi-partner projects. The system thus supports findable, accessible, interoperable and reusable (FAIR) research and is in accordance with the Open Science initiative. Source code and documentation of pISA-tree are available at https://github.com/NIB-SI/pISA-tree .


Assuntos
Disciplinas das Ciências Biológicas , Gerenciamento de Dados , Metadados , Software , Projetos de Pesquisa
19.
Front Plant Sci ; 13: 941338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388501

RESUMO

Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.

20.
Biomolecules ; 12(4)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454183

RESUMO

The stem cell theory of aging postulates that stem cells become inefficient at maintaining the original functions of the tissues. We, therefore, hypothesized that transplanting young bone marrow (BM) to old recipients would lead to rejuvenating effects on immunity, followed by improved general health, decreased frailty, and possibly life span extension. We developed a murine model of non-myeloablative heterochronic BM transplantation in which old female BALB/c mice at 14, 16, and 18(19) months of age received altogether 125.1 ± 15.6 million nucleated BM cells from young male donors aged 7-13 weeks. At 21 months, donor chimerism was determined, and the immune system's innate and adaptive arms were analyzed. Mice were then observed for general health and frailty until spontaneous death, when their lifespan, post-mortem examinations, and histopathological changes were recorded. The results showed that the old mice developed on average 18.7 ± 9.6% donor chimerism in the BM and showed certain improvements in their innate and adaptive arms of the immune system, such as favorable counts of neutrophils in the spleen and BM, central memory Th cells, effector/effector memory Th and Tc cells in the spleen, and B1a and B1b cells in the peritoneal cavity. Borderline enhanced lymphocyte proliferation capacity was also seen. The frailty parameters, pathomorphological results, and life spans did not differ significantly in the transplanted vs. control group of mice. In conclusion, although several favorable effects are obtained in our heterochronic non-myeloablative transplantation model, additional optimization is needed for better rejuvenation effects.


Assuntos
Transplante de Medula Óssea , Fragilidade , Animais , Transplante de Medula Óssea/métodos , Feminino , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa