Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(9): 100424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572791

RESUMO

Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Adulto , Animais , Humanos , Feminino , Masculino , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos , Fosfolipídeos , Ácidos Docosa-Hexaenoicos/metabolismo
2.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219822

RESUMO

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Oxilipinas , Solventes , Carbono
3.
Bipolar Disord ; 24(2): 171-184, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34218509

RESUMO

OBJECTIVE: To investigate the preliminary efficacy of a high n-3 plus low n-6 (H3-L6) dietary intervention in improving mood stability in Bipolar Disorder (BD) when compared to dietary intervention with usual U.S. levels of n-6 and n-3 polyunsaturated fatty acid (PUFA) intakes (control diet, CD). METHODS: This 2-arm, parallel-group, randomized, modified double-blind, controlled 48-week study of 12-week intensive diet intervention in subjects with BD was conducted at a single suburban-rural site in the mid-Atlantic region. Participants with DSM-IV TR BD I or II with hypomanic or depressive symptoms were randomized, stratified on gender (N = 82). The intervention included the provision of group-specific study foods and dietary counseling. Variability of mood symptoms was measured by a twice-daily, 12-week ecological momentary analysis (EMA) paradigm, and group differences were analyzed using multilevel models. Circulating n-3 and n-6 fatty acids were measured at baseline and after 4, 8, and 12 weeks of diet exposure. RESULTS: All 82 randomized participants were included in biochemical analyses. Seventy participants completed at least 2 EMA surveys and were included in primary EMA analyses. Variability in mood, energy, irritability, and pain as measured using EMA was reduced in the H3-L6 group compared to the CD group. No significant differences in mean ratings of mood symptoms, or any other symptom measures, were detected. The dietary intervention effect on target PUFAs significantly differed by the group over time. CONCLUSIONS: A dietary intervention adjunctive to usual care showed preliminary efficacy in improving variability in mood symptoms in participants with BD. TRIAL REGISTRATION: ClinicalTrials.Gov NCT02272010.


Assuntos
Transtorno Bipolar , Ácidos Graxos Ômega-3 , Transtorno Bipolar/psicologia , Transtorno Bipolar/terapia , Dieta , Método Duplo-Cego , Ácidos Graxos Ômega-6 , Humanos
4.
Cephalalgia ; 40(13): 1523-1531, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32799667

RESUMO

BACKGROUND: Headache diaries and recall questionnaires are frequently used to assess headache frequency and severity in clinical and research settings. METHODS: Using 20 weeks of data from an intervention trial with 182 participants, we evaluated concordance between an electronic headache diary administered on a daily basis and designed to capture the presence and severity of headaches on an hourly basis (the headache diary) and a recall questionnaire, with retrospective estimation of the number of headache days assessed on a monthly basis. We further examined whether the duration or severity of headaches assessed by the electronic diary impacted concordance between these two measures. RESULTS: Over the course of four 28-day periods, people with migraine participating in a dietary intervention reported an average of 13.7 and 11.1 headache days in the headache diary and recall questionnaire, respectively. CONCLUSION: Over time, the concordance between headache days reported in these two measures tended to increase; however, the recall questionnaire headache estimates were lower than the diary measures in all four periods. When analysis was restricted to headaches lasting 8 hours or more, the number of headache days was more closely aligned with days reported in the recall questionnaire, indicating that the accuracy of recall estimates is likely to be influenced by headache duration. Restriction of analyses to moderate-to-severe headaches did not change results as much as headache duration. The findings indicate that recall questionnaires administered on a monthly basis may underestimate headache frequency and therefore should not be used interchangeably with headache diaries.Clinical Trials.gov Identifier: NCT02012790.


Assuntos
Análise de Dados , Coleta de Dados/métodos , Cefaleia/epidemiologia , Rememoração Mental , Adulto , Feminino , Cefaleia/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Inquéritos e Questionários
5.
J Lipid Res ; 59(9): 1597-1609, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30084831

RESUMO

Circulating oxidized linoleic acid (LA) metabolites (OXLAMs) are increased in patients with nonalcoholic steatohepatitis (NASH) and their levels correlate with disease severity. However, the mechanisms by which OXLAMs contribute to NASH development are incompletely understood. We tested the hypothesis that LA or OXLAMs provided directly through the diet are involved in the development of hepatic injury. C57BL/6 mice were fed an isocaloric high-fat diet containing low LA, high LA, or OXLAMs for 8 weeks. The livers of OXLAM-fed mice showed lower triglyceride concentrations, but higher FA oxidation and lipid peroxidation in association with increased oxidative stress. OXLAM-induced mitochondrial dysfunction was associated with reduced Complex I protein and hepatic ATP levels, as well as increased mitochondrial biogenesis and cytoplasmic mitochondrial DNA. Oxidative stress increased thioredoxin-interacting protein (TXNIP) in the liver and stimulated the activation of mitochondrial apoptosis signal-regulating kinase 1 (ASK1) leading to apoptosis. We also found increased levels of NOD-like receptor protein 3 (NLRP3) inflammasome components and Caspase-1 activation in the livers of OXLAM-fed mice. In vitro, OXLAMs induced hepatocyte cell death, which was partly dependent on Caspase-1 activation. This study identified key mechanisms by which dietary OXLAMs contribute to NASH development, including mitochondrial dysfunction, hepatocyte cell death, and NLRP3 inflammasome activation.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxinas/metabolismo
6.
Am J Pathol ; 187(10): 2232-2245, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923202

RESUMO

Alcoholic liver disease is a major human health problem leading to significant morbidity and mortality in the United States and worldwide. Dietary fat plays an important role in alcoholic liver disease pathogenesis. Herein, we tested the hypothesis that a combination of ethanol and a diet rich in linoleic acid (LA) leads to the increased production of oxidized LA metabolites (OXLAMs), specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), which contribute to a hepatic proinflammatory response exacerbating liver injury. Mice were fed unsaturated (with a high LA content) or saturated fat diets (USF and SF, respectively) with or without ethanol for 10 days, followed by a single binge of ethanol. Compared to SF+ethanol, mice fed USF+ethanol had elevated plasma alanine transaminase levels, enhanced hepatic steatosis, oxidative stress, and inflammation. Plasma and liver levels of 9- and 13-HODEs were increased in response to USF+ethanol feeding. We demonstrated that primarily 9-HODE, but not 13-HODE, induced the expression of several proinflammatory cytokines in vitro in RAW264.7 macrophages. Finally, deficiency of arachidonate 15-lipoxygenase, a major enzyme involved in LA oxidation and OXLAM production, attenuated liver injury and inflammation caused by USF+ethanol feeding but had no effect on hepatic steatosis. This study demonstrates that OXLAM-mediated induction of a proinflammatory response in macrophages is one of the potential mechanisms underlying the progression from alcohol-induced steatosis to alcoholic steatohepatitis.


Assuntos
Gorduras na Dieta/efeitos adversos , Inflamação/patologia , Ácido Linoleico/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Consumo Excessivo de Bebidas Alcoólicas , Composição Corporal , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Macrófagos/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Células RAW 264.7
7.
Cephalalgia ; 38(5): 912-932, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28699403

RESUMO

Background The trigeminal ganglion contains neurons that relay sensations of pain, touch, pressure, and many other somatosensory modalities to the central nervous system. The ganglion is also a reservoir for latent herpes virus 1 infection. To gain a better understanding of molecular factors contributing to migraine and headache, transcriptome analyses were performed on postmortem human trigeminal ganglia. Methods RNA-Seq measurements of gene expression were conducted on small sub-regions of 16 human trigeminal ganglia. The samples were also characterized for transcripts derived from viral and microbial genomes. Herpes simplex virus 1 (HSV-1) antibodies in blood were measured using the luciferase immunoprecipitation assay. Results Observed molecular heterogeneity could be explained by sampling of anatomically distinct sub-regions of the excised ganglia consistent with neurally-enriched and non-neural, i.e. Schwann cell, enriched subregions. The levels of HSV-1 transcripts detected in trigeminal ganglia correlated with blood levels of HSV-1 antibodies. Multiple migraine susceptibility genes were strongly expressed in neurally-enriched trigeminal samples, while others were expressed in blood vessels. Conclusions These data provide a comprehensive human trigeminal transcriptome and a framework for evaluation of inhomogeneous post-mortem tissues through extensive quality control and refined downstream analyses for RNA-Seq methodologies. Expression profiling of migraine susceptibility genes identified by genetic association appears to emphasize the blood vessel component of the trigeminovascular system. Other genes displayed enriched expression in the trigeminal compared to dorsal root ganglion, and in-depth transcriptomic analysis of the KCNK18 gene underlying familial migraine shows selective neural expression within two specific populations of ganglionic neurons. These data suggest that expression profiling of migraine-associated genes can extend and amplify the underlying neurobiological insights obtained from genetic association studies.


Assuntos
Herpesvirus Humano 1/genética , Canais de Potássio/genética , RNA/genética , Análise de Sequência de RNA/métodos , Gânglio Trigeminal/patologia , Adolescente , Adulto , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gânglio Trigeminal/fisiologia , Gânglio Trigeminal/virologia , Adulto Jovem
8.
Anal Bioanal Chem ; 410(23): 6009-6029, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30074088

RESUMO

Oxylipins are bioactive mediators that play diverse roles in (patho)physiology. We developed a sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous profiling of 57 targeted oxylipins derived from five major n-6 and n-3 polyunsaturated fatty acids (PUFAs) that serve as oxylipin precursors, including linoleic (LA), arachidonic (AA), alpha-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The targeted oxylipin panel provides broad coverage of lipid mediators and pathway markers generated from cyclooxygenases, lipoxygenases, cytochrome P450 epoxygenases/hydroxylases, and non-enzymatic oxidation pathways. The method is based on combination of protein precipitation and solid-phase extraction (SPE) for sample preparation, followed by UPLC-MS/MS. This is the first methodology to incorporate four hydroxy-epoxy-octadecenoic acids and four keto-epoxy-octadecenoic acids into an oxylipin profiling network. The novel method achieves excellent resolution and allows in-depth analysis of isomeric and isobaric species of oxylipin extracts in biological samples. The method was quantitatively characterized in human plasma with good linearity (R = 0.990-0.999), acceptable reproducibility (relative standard deviation (RSD) < 20% for the majority of analytes), accuracy (67.8 to 129.3%) for all analytes, and recovery (66.8-121.2%) for all analytes except 5,6-EET. Ion enhancement effects for 28% of the analytes in tested concentrations were observed in plasma, but were reproducible with RSD < 17.2%. Basal levels of targeted oxylipins determined in plasma and serum are in agreement with those previously reported in literature. The method has been successfully applied in clinical and preclinical studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oxilipinas/análise , Oxilipinas/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Isomerismo , Limite de Detecção , Metabolômica/métodos , Ácidos Oleicos/análise , Ácidos Oleicos/sangue , Reprodutibilidade dos Testes
9.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27030719

RESUMO

BACKGROUND: Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. RESULTS: Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. CONCLUSIONS: The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes.


Assuntos
Autacoides/farmacologia , Gorduras na Dieta/farmacologia , Ácido Linoleico/farmacologia , Nociceptividade/efeitos dos fármacos , Dor/patologia , Animais , Ácidos Graxos Ômega-3/farmacologia , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Oxilipinas/farmacologia , Ratos Endogâmicos F344 , Síndrome
10.
Am J Pathol ; 185(1): 43-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447051

RESUMO

Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro resulted in activation of TRPV1 signal transduction with increased intracellular Ca(2+) levels. Genetic depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1 deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and chemokine expression, including tumor necrosis factor-α, IL-6, macrophage inflammatory protein-2, and monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions appear to play a significant role in hepatic inflammation/injury, further supporting an important role for dietary lipids in ALD.


Assuntos
Hepatopatias Alcoólicas/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Caspase 3/metabolismo , Quimiocina CCL2/sangue , Quimiocina CXCL2/sangue , Modelos Animais de Doenças , Etanol/química , Células Hep G2 , Humanos , Inflamação/patologia , Interleucina-6/sangue , Ligantes , Ácido Linoleico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Necrose Tumoral alfa/sangue
11.
Br J Psychiatry ; 209(3): 192-201, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27103682

RESUMO

BACKGROUND: Trials evaluating efficacy of omega-3 highly unsaturated fatty acids (HUFAs) in major depressive disorder report discrepant findings. AIMS: To establish the reasons underlying inconsistent findings among randomised controlled trials (RCTs) of omega-3 HUFAs for depression and to assess implications for further trials. METHOD: A systematic bibliographic search of double-blind RCTs was conducted between January 1980 and July 2014 and an exploratory hypothesis-testing meta-analysis performed in 35 RCTs including 6665 participants receiving omega-3 HUFAs and 4373 participants receiving placebo. RESULTS: Among participants with diagnosed depression, eicosapentaenoic acid (EPA)-predominant formulations (>50% EPA) demonstrated clinical benefits compared with placebo (Hedge's G = 0.61, P<0.001) whereas docosahexaenoic acid (DHA)-predominant formulations (>50% DHA) did not. EPA failed to prevent depressive symptoms among populations not diagnosed for depression. CONCLUSIONS: Further RCTs should be conducted on study populations with diagnosed or clinically significant depression of adequate duration using EPA-predominant omega-3 HUFA formulations.


Assuntos
Transtorno Depressivo Maior/dietoterapia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Humanos
14.
Br J Nutr ; 110(3): 559-68, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23328113

RESUMO

Few trials have evaluated the metabolic effects and health outcomes of lowering dietary n-6 PUFA. The objectives of the present paper were (1) to report the methods employed to lower dietary n-6 PUFA, while either increasing or maintaining n-3 PUFA intake and (2) to validate our methods with 24 h recalls and erythrocyte fatty acid analyses. A total of sixty-seven subjects were randomised to either (1) an average-n-3 PUFA, low-n-6 PUFA (L6) intervention designed to lower linoleic acid (LA; #2·5% of energy (en%)) and arachidonic acid (#60 mg/d), while maintaining an average US intake of n-3 PUFA or (2) a high-n-3 PUFA, low-n-6 PUFA (H3-L6) intervention designed to lower n-6 LA, while increasing the n-3 PUFA a-linolenic acid (ALA; $1·5 en%) and EPA þ DHA ($1000 mg/d). Pre- and intraintervention nutrient intakes were estimated with six 24 h dietary recalls per subject. Both groups achieved the targeted reductions in dietary LA to #2·5 en% (median LA 2·45 (2·1, 3·1); P,0·001). Intakes of n-3 PUFA did not change for the L6 group. Target increases in n-3 ALA (median 1·6 en%, (1·3, 2·0), P,0·001) and EPA þ DHA (1482 mg, (374, 2558), P,0·001) were achieved in the H3-L6 group. Dietary changes were validated by corresponding changes in erythrocyte n-6 and n-3 fatty acid composition. Dietary LA can be lowered to #2·5 en%, with or without concurrent increases in dietary n-3 PUFA, in an outpatient clinical trial setting using this integrated diet method.


Assuntos
Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Ácidos Graxos Ômega-3/administração & dosagem , Comportamento Alimentar , Ácido Linoleico/administração & dosagem , Avaliação Nutricional , Adolescente , Adulto , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/sangue , Pesquisa Biomédica/métodos , Gorduras na Dieta/sangue , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/sangue , Eritrócitos/química , Ácidos Graxos Ômega-3/sangue , Feminino , Humanos , Ácido Linoleico/sangue , Masculino , Rememoração Mental , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/sangue
15.
Biomed Chromatogr ; 27(4): 422-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23037960

RESUMO

Linoleic acid (LA) and LA-esters are the precursors of LA hydroperoxides, which are readily converted to 9- and 13-hydroxy-​octadecadienoic acid (HODE) and 9- and 13-oxo-​octadecadienoic acid (oxo ODE) metabolites in vivo. These four oxidized LA metabolites (OXLAMs) have been implicated in a variety of pathological conditions. Therefore, their accurate measurement may provide mechanistic insights into disease pathogenesis. Here we present a novel quadrupole time-of-flight mass spectrometry (Q-TOFMS) method for quantitation and identification of target OXLAMs in rat plasma. In this method, the esterified OXLAMs were base-hydrolyzed and followed by liquid-liquid extraction. Quantitative analyses were based on one-point standard addition with isotope dilution. The Q-TOFMS data of target metabolites were acquired and multiple reaction monitoring extracted-ion chromatograms were generated post-acquisition with a 10 ppm extraction window. The limit of quantitation was 9.7-35.9 nmol/L depending on the metabolite. The method was reproducible with a coefficient of variation of <18.5%. Mean concentrations of target metabolites in rat plasma were 57.8, 123.2, 218.1 and 57.8 nmol/L for 9-HODE, 13-HODE, 9-oxoODE and 13-oxoODE, respectively. Plasma levels of total OXLAMs were 456.9 nmol/L, which correlated well with published concentrations obtained by gas chromatography/mass spectrometry (GC/MS). The concentrations were also obtained utilizing a standard addition curve approach. The calibration curves were linear with correlation coefficients of >0.991. Concentrations of 9-HODE, 13-HODE, 9-oxoODE and 13-oxoODE were 84.0, 138.6, 263.0 and 69.5 nmol/L, respectively, which were consistent with the results obtained from one-point standard addition. Target metabolites were simultaneously characterized based on the accurate Q-TOFMS data. This is the first study of secondary LA metabolites using Q-TOFMS. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Ácidos Linoleicos Conjugados/sangue , Ácidos Linoleicos/sangue , Ácidos Linolênicos/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Limite de Detecção , Ratos , Reprodutibilidade dos Testes
16.
JID Innov ; 3(2): 100177, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36876220

RESUMO

Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gßγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.

17.
Res Sq ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37461602

RESUMO

BACKGROUND: Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS: We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS: We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION: Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.

18.
medRxiv ; 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37333406

RESUMO

BACKGROUND: Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS: We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS: We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION: Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.

19.
Metabolites ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367848

RESUMO

A previous report showed that 12-week lowering of dietary omega-6 linoleic acid (LA) coupled with increased omega-3 polyunsaturated fatty acid (PUFA) intake (H3-L6 diet) reduced headache frequency and improved quality of life in patients with chronic daily headaches (CDHs) compared to dietary LA reduction alone (L6 diet). The trial also showed that targeted dietary manipulation alters PUFA-derived lipid mediators and endocannabinoids. However, several additional classes of lipid mediators associated with pain in preclinical models were not measured. The current secondary analysis investigated whether the clinical benefits of the H3-L6 diet were related to changes in plasma unesterified PUFA-derived lipid mediators known to be involved in nociception, including prostanoids. Lipid mediators were measured by ultra-high-pressure liquid chromatography coupled with tandem mass-spectrometry. Compared to baseline, dietary LA lowering with or without added omega-3 fatty acids did not alter unesterified n-6 PUFA-derived lipid mediators, although several species derived from LA, di-homo-gamma-linolenic acid, and arachidonic acid were positively associated with headache frequency and intensity, as well as mental health burden. Alpha-linolenic acid (ALA)-derived metabolites were also associated with increased headache frequency and intensity, although they did not change from the baseline in either dietary group. Compared to baseline, docosahexaenoic acid (DHA)-derived epoxides were more elevated in the H3-L6 group compared to the L6 group. Diet-induced elevations in plasma DHA-epoxides were associated with reduced headache frequency, better physical and mental health, and improved quality of life (p < 0.05). Prostanoids were not detected, except for PGF2-alpha, which was not associated with any outcomes. This study demonstrates that diet-induced changes in DHA-epoxides were associated with pain reduction in patients with chronic headaches, whereas n-6 PUFA and ALA metabolites were associated with nociception. Lipid mediator associations with mental health and quality of life paralleled pain management outcomes in this population. The findings point to a network of multiple diet-modifiable lipid mediator targets for pain management in individuals with CDHs.

20.
Acta Neuropathol Commun ; 11(1): 197, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093390

RESUMO

In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.


Assuntos
Doença de Alzheimer , Receptores de LDL , Humanos , Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa