Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141610

RESUMO

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Assuntos
Transdução de Sinais , Tromboplastina , Animais , Camundongos , Inflamação , Interferon-alfa , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tromboplastina/genética
2.
Kidney Int ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821446

RESUMO

DNA-binding protein-A (DbpA; gene: Ybx3) belongs to the cold shock protein family with known functions in cell cycling, transcription, translation, and tight junction communication. In chronic nephritis, DbpA is upregulated. However, its activities in acute injury models, such as kidney ischemia/reperfusion injury (IRI), are unclear. To study this, mice harboring Ybx3+/+, Ybx3+/- or the Ybx3-/- genotype were characterized over 24 months and following experimental kidney IRI. Mitochondrial function, number and integrity were analyzed by mitochondrial stress tests, MitoTracker staining and electron microscopy. Western Blot, immunohistochemistry and flow cytometry were performed to quantify tubular cell damage and immune cell infiltration. DbpA was found to be dispensable for kidney development and tissue homeostasis under healthy conditions. Furthermore, endogenous DbpA protein localizes within mitochondria in primary tubular epithelial cells. Genetic deletion of Ybx3 elevates the mitochondrial membrane potential, lipid uptake and metabolism, oxygen consumption rates and glycolytic activities of tubular epithelial cells. Ybx3-/- mice demonstrated protection from IRI with less immune cell infiltration, endoplasmic reticulum stress and tubular cell damage. A presumed protective mechanism was identified via upregulated antioxidant activities and reduced ferroptosis, when Ybx3 was deleted. Thus, our studies reveal DbpA acts as a mitochondrial protein with profound adverse effects on cell metabolism and highlights a protective effect against IRI when Ybx3 is genetically deleted. Hence, preemptive DbpA targeting in situations with expected IRI, such as kidney transplantation or cardiac surgery, may preserve post-procedure kidney function.

3.
Kidney Int ; 105(1): 65-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37774921

RESUMO

Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.


Assuntos
Nefropatias , Podócitos , Camundongos , Animais , Inflamassomos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Resposta ao Choque Frio , Rim/metabolismo , Podócitos/metabolismo , Nefropatias/metabolismo , Inflamação/metabolismo
4.
Blood ; 137(7): 977-982, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32870264

RESUMO

Excess platelet activation by extracellular vesicles (EVs) results in trophoblast inflammasome activation, interleukin 1ß (IL-1ß) activation, preeclampsia (PE), and partial embryonic lethality. Embryonic thrombomodulin (TM) deficiency, which causes embryonic lethality hallmarked by impaired trophoblast proliferation, has been linked with maternal platelet activation. We hypothesized that placental TM loss, platelet activation, and embryonic lethality are mechanistically linked to trophoblast inflammasome activation. Here, we uncover unidirectional interaction of placental inflammasome activation and reduced placental TM expression: although inflammasome inhibition did not rescue TM-null embryos from lethality, the inflammasome-dependent cytokine IL-1ß reduced trophoblast TM expression and impaired pregnancy outcome. EVs, known to induce placental inflammasome activation, reduced trophoblast TM expression and proliferation. Trophoblast TM expression correlated negatively with IL-1ß expression and positively with platelet numbers and trophoblast proliferation in human PE placentae, implying translational relevance. Soluble TM treatment or placental TM restoration ameliorated the EV-induced PE-like phenotype in mice, preventing placental thromboinflammation and embryonic death. The lethality of TM-null embryos is not a consequence of placental NLRP3 inflammasome activation. Conversely, EV-induced placental inflammasome activation reduces placental TM expression, promoting placental and embryonic demise. These data identify a new function of placental TM in PE and suggest that soluble TM limits thromboinflammatory pregnancy complications.


Assuntos
Morte Fetal/etiologia , Inflamassomos/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trombomodulina/deficiência , Animais , Divisão Celular , Regulação para Baixo , Vesículas Extracelulares , Feminino , Genes Letais , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Placenta/irrigação sanguínea , Ativação Plaquetária , Plasma Rico em Plaquetas , Gravidez , Resultado da Gravidez , Receptores de Trombina , Proteínas Recombinantes/farmacologia , Trombomodulina/antagonistas & inibidores , Trombomodulina/biossíntese , Trombomodulina/genética , Trofoblastos/metabolismo
5.
Circ Res ; 128(4): 513-529, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33353373

RESUMO

RATIONALE: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES: To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS: We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores do Fator Xa/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína C/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Inibidores do Fator Xa/farmacologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína C/farmacologia
6.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709711

RESUMO

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Integrina beta3/fisiologia , Podócitos/fisiologia , Proteína C/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Citoproteção , Receptor de Proteína C Endotelial/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/fisiologia
7.
Environ Pollut ; 347: 123668, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442820

RESUMO

The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 µgL-1 with some exception for CIP (50-100 µgL-1) and CTZ (100-150 µgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Adulto , Criança , Humanos , Himalaia , Monitoramento Ambiental , Ciprofloxacina/toxicidade , Norfloxacino , Cetirizina , Medição de Risco , Água , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Cells ; 12(10)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37408260

RESUMO

DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain proteins that exert transcriptional and translational activities in the cell via their ability to bind and regulate mRNA. To investigate the role of DbpA in kidney disease, we utilized the murine unilateral ureter obstruction (UUO) model, which recapitulates many features of obstructive nephropathy seen in humans. We observed that DbpA protein expression is induced within the renal interstitium following disease induction. Compared with wild-type animals, obstructed kidneys from Ybx3-deficient mice are protected from tissue injury, with a significant reduction in the number of infiltrating immune cells as well as in extracellular matrix deposition. RNAseq data from UUO kidneys show that Ybx3 is expressed by activated fibroblasts, which reside within the renal interstitium. Our data support a role for DbpA in orchestrating renal fibrosis and suggest that strategies targeting DbpA may be a therapeutic option to slow disease progression.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Camundongos , Resposta ao Choque Frio , Proteínas de Ligação a DNA/metabolismo , Fibrose , Nefropatias/patologia , Túbulos Renais/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/genética
10.
Blood Adv ; 7(17): 5055-5068, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315174

RESUMO

A direct regulation of adaptive immunity by the coagulation protease activated protein C (aPC) has recently been established. Preincubation of T cells with aPC for 1 hour before transplantation increases FOXP3+ regulatory T cells (Tregs) and reduces acute graft-versus-host disease (aGVHD) in mice, but the underlying mechanism remains unknown. Because cellular metabolism modulates epigenetic gene regulation and plasticity in T cells, we hypothesized that aPC promotes FOXP3+ expression by altering T-cell metabolism. To this end, T-cell differentiation was assessed in vitro using mixed lymphocyte reaction or plate-bound α-CD3/CD28 stimulation, and ex vivo using T cells isolated from mice with aGVHD without and with aPC preincubation, or analyses of mice with high plasma aPC levels. In stimulated CD4+CD25- cells, aPC induces FOXP3 expression while reducing expression of T helper type 1 cell markers. Increased FOXP3 expression is associated with altered epigenetic markers (reduced 5-methylcytosine and H3K27me3) and reduced Foxp3 promoter methylation and activity. These changes are linked to metabolic quiescence, decreased glucose and glutamine uptake, decreased mitochondrial metabolism (reduced tricarboxylic acid metabolites and mitochondrial membrane potential), and decreased intracellular glutamine and α-ketoglutarate levels. In mice with high aPC plasma levels, T-cell subpopulations in the thymus are not altered, reflecting normal T-cell development, whereas FOXP3 expression in splenic T cells is reduced. Glutamine and α-ketoglutarate substitution reverse aPC-mediated FOXP3+ induction and abolish aPC-mediated suppression of allogeneic T-cell stimulation. These findings show that aPC modulates cellular metabolism in T cells, reducing glutamine and α-ketoglutarate levels, which results in altered epigenetic markers, Foxp3 promoter demethylation and induction of FOXP3 expression, thus favoring a Treg-like phenotype.


Assuntos
Ácidos Cetoglutáricos , Proteína C , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Proteína C/metabolismo , Glutamina/genética , Glutamina/metabolismo , Linfócitos T Reguladores , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
11.
Chembiochem ; 13(4): 584-9, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22315191

RESUMO

MicroRNAs (miRNAs) have crucial functions in many cellular processes, such as differentiation, proliferation and apoptosis; aberrant expression of miRNAs has been linked to human diseases, including cancer. Tools that allow specific and efficient knockdown of miRNAs would be of immense importance for exploring miRNA function. Zebrafish serves as an excellent vertebrate model system to understand the functions of miRNAs involved in a variety of biological processes. We designed and employed a strategy based on locked nucleic acid enzymes (LNAzymes) for in vivo knockdown of miRNA in zebrafish embryos. We demonstrate that LNAzyme can efficiently knockdown miRNAs with minimal toxicity to the zebrafish embryos.


Assuntos
Embrião não Mamífero/metabolismo , Enzimas/metabolismo , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , MicroRNAs/genética
12.
Nutrients ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893913

RESUMO

It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.


Assuntos
Síndrome Metabólica , Estado Pré-Diabético , Seguimentos , Humanos , Estilo de Vida , Masculino , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Estado Pré-Diabético/epidemiologia , Redução de Peso/fisiologia
13.
Food Funct ; 13(19): 10357, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36125030

RESUMO

Correction for 'Bioactive peptides derived from milk proteins and their health beneficial potentials: an update' by Ravinder Nagpal et al., Food Funct., 2011, 2, 18-27, DOI: 10.1039/C0FO00016G.

14.
Nutrients ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631132

RESUMO

Diabetes mellitus, which is largely driven by nutritional and behavioral factors, is characterized by accelerated atherosclerosis with impaired plaque stability. Atherosclerosis and associated complications are the major cause of mortality in diabetic patients. Efficient therapeutic concepts for diabetes-associated atherosclerosis are lacking. Atherosclerosis among diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we demonstrate that atherosclerotic plaque stability is reduced in hyperglycemic mice expressing dysfunctional TM (TMPro/Pro mice), which have a pro-coagulant phenotype due to impaired thrombin inhibition and markedly reduced aPC generation. The vessel lumen and plaque size of atherosclerotic lesions in the truncus brachiocephalic were decreased in diabetic TMPro/Pro ApoE-/- mice compared to diabetic ApoE-/- mice. While lipid accumulation in lesions of diabetic TMPro/Pro ApoE-/- mice was lower than that in diabetic ApoE-/- mice, morphometric analyses revealed more prominent signs of instable plaques, such as a larger necrotic core area and decreased fibrous cap thickness in diabetic TMPro/Pro ApoE-/- mice. Congruently, more macrophages and fewer smooth muscle cells were observed within lesions of diabetic TMPro/Pro ApoE-/- mice. Thus, impaired TM function reduces plaque stability, a characteristic of hyperglycemia-associated plaques, thus suggesting the crucial role of impaired TM function in mediating diabetes-associated atherosclerosis.


Assuntos
Aterosclerose , Diabetes Mellitus , Placa Aterosclerótica , Trombofilia , Animais , Aterosclerose/metabolismo , Diabetes Mellitus/patologia , Humanos , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/complicações
15.
Nutrients ; 14(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889743

RESUMO

Diabetes mellitus is hallmarked by accelerated atherosclerosis, a major cause of mortality among patients with diabetes. Efficient therapies for diabetes-associated atherosclerosis are absent. Accelerated atherosclerosis in diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we directly compared the effects of high glucose and oxidized LDL, revealing that high glucose induced more pronounced responses in regard to maladaptive unfolded protein response (UPR), senescence, and vascular endothelial cell barrier disruption. Ex vivo, diabetic ApoE-/- mice displayed increased levels of senescence and UPR markers within atherosclerotic lesions compared with nondiabetic ApoE-/- mice. Activated protein C pretreatment maintained barrier permeability and prevented glucose-induced expression of senescence and UPR markers in vitro. These data suggest that high glucose-induced maladaptive UPR and associated senescence promote vascular endothelial cell dysfunction, which-however-can be reversed by aPC. Taken together, current data suggest that reversal of glucose-induced vascular endothelial cell dysfunction is feasible.


Assuntos
Aterosclerose , Diabetes Mellitus , Estresse do Retículo Endoplasmático , Animais , Aterosclerose/etiologia , Aterosclerose/fisiopatologia , Senescência Celular , Glucose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína C
16.
Nutrients ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889923

RESUMO

Diabetes mellitus is a metabolic disease largely due to lifestyle and nutritional imbalance, resulting in insulin resistance, hyperglycemia and vascular complications. Diabetic kidney disease (DKD) is a major cause of end-stage renal failure contributing to morbidity and mortality worldwide. Therapeutic options to prevent or reverse DKD progression are limited. Endothelial and glomerular filtration barrier (GFB) dysfunction and sterile inflammation are associated with DKD. Neutrophil extracellular traps (NETs), originally identified as an innate immune mechanism to combat infection, have been implicated in sterile inflammatory responses in non-communicable diseases. However, the contribution of NETs in DKD remains unknown. Here, we show that biomarkers of NETs are increased in diabetic mice and diabetic patients and that these changes correlate with DKD severity. Mechanistically, NETs promote NLRP3 inflammasome activation and glomerular endothelial dysfunction under high glucose stress in vitro and in vivo. Inhibition of NETs (PAD4 inhibitor) ameliorate endothelial dysfunction and renal injury in DKD. Taken together, NET-induced sterile inflammation promotes diabetes-associated endothelial dysfunction, identifying a new pathomechanism contributing to DKD. Inhibition of NETs may be a promising therapeutic strategy in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Armadilhas Extracelulares , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Armadilhas Extracelulares/metabolismo , Inflamassomos/metabolismo , Inflamação/complicações , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
17.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956315

RESUMO

Diabetic kidney disease (DKD) is an emerging pandemic, paralleling the worldwide increase in obesity and diabetes mellitus. DKD is now the most frequent cause of end-stage renal disease and is associated with an excessive risk of cardiovascular morbidity and mortality. DKD is a consequence of systemic endothelial dysfunction. The endothelial-dependent cytoprotective coagulation protease activated protein C (aPC) ameliorates glomerular damage in DKD, in part by reducing mitochondrial ROS generation in glomerular cells. Whether aPC reduces mitochondrial ROS generation in the tubular compartment remains unknown. Here, we conducted expression profiling of kidneys in diabetic mice (wild-type and mice with increased plasma levels of aPC, APChigh mice). The top induced pathways were related to metabolism and in particular to oxidoreductase activity. In tubular cells, aPC maintained the expression of genes related to the electron transport chain, PGC1-α expression, and mitochondrial mass. These effects were associated with reduced mitochondrial ROS generation. Likewise, NLRP3 inflammasome activation and sterile inflammation, which are known to be linked to excess ROS generation in DKD, were reduced in diabetic APChigh mice. Thus, aPC reduces mitochondrial ROS generation in tubular cells and dampens the associated renal sterile inflammation. These studies support approaches harnessing the cytoprotective effects of aPC in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Inflamação/complicações , Rim/metabolismo , Camundongos , Proteína C , Espécies Reativas de Oxigênio/metabolismo
18.
Nat Commun ; 13(1): 5062, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030260

RESUMO

A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Animais , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Humanos , Hiperglicemia/patologia , Rim
19.
J Assoc Physicians India ; 59: 33-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21751662

RESUMO

AIMS: To generate real world clinical data on efficacy and tolerability of tolperisone 150 mg in painful muscle spasms in Indian population. SETTINGS AND DESIGN: Prospective, open-labelled, non-comparative, multi-centre observational, Post Marketing surveillance study conducted at 174 participating orthopaedic care centres across India METHODS AND MATERIAL: Nine hundred and twenty adult patients having painful muscle spasm associated with degenerative or inflammatory conditions were enrolled who received tolperisone 150 mg thrice daily orally for 7 days. Assessment of primary efficacy (muscle spasm) was done by (0-3) Likert scale. Adverse events were monitored for safety and global efficacy assessment was done by clinicians and patients at the end of study period. RESULTS: Significant improvements from baseline (p < 0.0001) in scores for muscle tone, mobility & pain were seen on days 3 & 7. At the end of study there was a significant reduction in scores by more than 80% from baseline. A subgroup analysis revealed no statistical difference in the scores in patients receiving Non-Steroidal AntiInflammatory Drug (NSAID) as compared to those receiving Tolperisone alone suggesting that Tolperisone alone could be offered to patients with painful muscle spasm who are intolerant to NSAIDs or in whom NSAIDs are contraindicated. Tolperisone was well tolerated with no sedation reported by any patient during study period. The incidence of common adverse effects like nausea, gastric irritation was less than 2%. CONCLUSIONS: Tolperisone is a safe, effective and non sedative alternative in management of acute painful spasm conditions associated with degenerative or inflammatory diseases of the musculoskeletal system. Key Messages: Tolperisone is a skeletal muscle relaxant without concomitant sedation or withdrawal phenomena. In this open-labelled, non-comparative, prospective study tolperisone was proved to be a safe & effective alternative to skeletal muscle relaxants in the management of acute painful spasm conditions associated with degenerative or inflammatory diseases of the musculoskeletal system.


Assuntos
Relaxantes Musculares Centrais/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Espasmo/tratamento farmacológico , Tolperisona/uso terapêutico , Administração Oral , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Relaxantes Musculares Centrais/farmacologia , Doenças Musculares/complicações , Doenças Musculares/etiologia , Dor/tratamento farmacológico , Dor/etiologia , Vigilância da População , Vigilância de Produtos Comercializados , Estudos Prospectivos , Espasmo/complicações , Tolperisona/farmacologia , Resultado do Tratamento , Adulto Jovem
20.
J Assoc Physicians India ; 58: 77-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20653147

RESUMO

OBJECTIVE(S): To assess the efficacy and safety of once daily olmesartan medoxomil 20 mg in Indian patients with stage 1 essential hypertension. METHOD(S): This was an open label, multicentre, real world observational postmarketing surveillance conducted in male and female patients (N=825), in age group of 18 to 65 yrs who had clinically diagnosed stage 1 hypertension (JNC-7 guidelines) and were prescribed olmesartan medoxomil 20 mg once daily as treatment. There were total of seven study visits, Visit-1 (day 1) and end of study visit-7 (end of week 8). Except for those patients who did not achieve the target BP levels, all the patients continued to receive olmesartan medoxomil 20 mg for 8 weeks, given once a day at 24 hourly intervals. At end of surveillance (EOS; week 8) visit-7 clinical response to treatment was determined by "responder rate" and changes in level of systolic blood pressure (SBP) and diastolic blood pressure (DBP). Responder rate criteria was defined as, SBP and DBP levels of <140 mmHg and <90 mmHg respectively, and for hypertensive patients with diabetes mellitus SBP and DBP levels of < 130 mmHg and < 80 mmHg respectively. RESULT(S): There were significant changes in mean sitting systolic and diastolic blood pressure, the primary end point of the study. From baseline visit to the end of the surveillance visit-7 (week 8), a mean change of -18.7 (147.86 to 129.16; p < .0001; 95% CI) in sitting SBP and a mean change of -14.47 (95.99 to 81.56; p < .0001; 95% CI) in sitting DBP respectively was observed with olmesartan 20 mg once daily. The response rate at the end of study was 81.82% and 70.18% for SBP and DBP respectively, in stage 1 hypertensive patients without diabetes mellitus. It was 73.38% and 65.47% respectively for SBP and DBP in patients with diabetes. Overall efficacy of Olmesartan medoxomil 20 mg was excellent to very good in 92.5% patients, only 05 (0.6%) of patients, reported of poor efficacy. Tolerability as assessed globally was reported to be excellent to very good by 92.1% of patient, with only one patient (0.1%) reported it to be poor. The most common adverse events reported were dizziness (82.52%), headache (63%), respiratory tract infection (50.40%) and nausea (40.24%); all the AE's were mild-moderate in nature which did not require stoppage of treatment. CONCLUSION(S): Our findings reiterated that Olmesartan medoxomil 20 mg once daily is not only effective in achieving the desired BP in a significant number of patients, it also shows excellent tolerability and hence compliance. Olmesartan is a valuable option for treatment of essential hypertension in adult Indian patients.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Imidazóis/uso terapêutico , Tetrazóis/uso terapêutico , Adolescente , Adulto , Idoso , Bloqueadores do Receptor Tipo 1 de Angiotensina II/efeitos adversos , Anti-Hipertensivos/efeitos adversos , Povo Asiático , Pressão Sanguínea/fisiologia , Feminino , Humanos , Hipertensão/classificação , Hipertensão/fisiopatologia , Imidazóis/efeitos adversos , Índia , Masculino , Pessoa de Meia-Idade , Olmesartana Medoxomila , Vigilância de Produtos Comercializados , Tetrazóis/efeitos adversos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa