Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(48): 8157-8171, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37788939

RESUMO

Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep. Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta frequency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical excitation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, frequency-specific cortical interactions in the sleep-wake transition.SIGNIFICANCE STATEMENT Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous, anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven regulation of sleep homeostasis.


Assuntos
Eletroencefalografia , Vigília , Humanos , Feminino , Vigília/fisiologia , Eletroencefalografia/métodos , Movimentos Oculares , Fases do Sono/fisiologia , Sono/fisiologia
2.
Alzheimers Dement ; 20(5): 3228-3250, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38501336

RESUMO

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Demência Frontotemporal , Humanos , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/patologia , Encéfalo/fisiopatologia , Encéfalo/patologia , Feminino , Doença de Alzheimer/fisiopatologia , Masculino , Idoso , Conectoma , Pessoa de Meia-Idade , Modelos Neurológicos
3.
Neuroimage ; 281: 120358, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699440

RESUMO

Dynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain network activity. While many studies have investigated static functional connectivity, it has been unclear whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent extracting reliable features to address this question. Here, we use a novel and robust time-varying dynamic network (TVDN) approach to extract the dynamic RSFC features from high resolution magnetoencephalography (MEG) data of participants with Alzheimer's disease (AD) and matched controls. The TVDN algorithm automatically and adaptively learns the low-dimensional spatiotemporal manifold of dynamic RSFC and detects dynamic state transitions in data. We show that amongst all the functional features we investigated, the dynamic manifold features are the most predictive of AD. These include: the temporal complexity of the brain network, given by the number of state transitions and their dwell times, and the spatial complexity of the brain network, given by the number of eigenmodes. These dynamic features have higher sensitivity and specificity in distinguishing AD from healthy subjects than the existing benchmarks do. Intriguingly, we found that AD patients generally have higher spatial complexity but lower temporal complexity compared with healthy controls. We also show that graph theoretic metrics of dynamic component of TVDN are significantly different in AD versus controls, while static graph metrics are not statistically different. These results indicate that dynamic RSFC features are impacted in neurodegenerative disease like Alzheimer's disease, and may be crucial to understanding the pathophysiological trajectory of these diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo
4.
Brain ; 145(2): 744-753, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34919638

RESUMO

Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease. Using magnetoencephalography (MEG) at rest, we studied 30 Alzheimer's disease patients without subclinical epileptiform activity, 20 Alzheimer's disease patients with subclinical epileptiform activity and 35 age-matched controls. Presence of subclinical epileptiform activity was assessed in patients with Alzheimer's disease by long-term video-EEG and a 1-h resting MEG with simultaneous EEG. Using the resting-state source-space reconstructed MEG signal, in patients and controls we computed the global imaginary coherence in alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillatory frequencies. We found that Alzheimer's disease patients with subclinical epileptiform activity have greater reductions in alpha imaginary coherence and greater enhancements in delta-theta imaginary coherence than Alzheimer's disease patients without subclinical epileptiform activity, and that these changes can distinguish between Alzheimer's disease patients with subclinical epileptiform activity and Alzheimer's disease patients without subclinical epileptiform activity with high accuracy. Finally, a principal component regression analysis showed that the variance of frequency-specific neuronal synchrony predicts longitudinal changes in Mini-Mental State Examination in patients and controls. Our results demonstrate that quantitative neurophysiological measures are sensitive biomarkers of network hyperexcitability and can be used to improve diagnosis and to select appropriate patients for the right therapy in the next-generation clinical trials. The current results provide an integrative framework for investigating network hyperexcitability and network dysfunction together with cognitive and clinical correlates in patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Encéfalo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/etiologia , Eletroencefalografia/métodos , Humanos , Magnetoencefalografia
5.
Alzheimers Dement ; 19(8): 3272-3282, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749893

RESUMO

INTRODUCTION: Sleep-wake disturbances are a prominent feature of Alzheimer's disease (AD). Atypical (non-amnestic) AD syndromes have different patterns of cortical vulnerability to AD. We hypothesized that atypical AD also shows differential vulnerability in subcortical nuclei that will manifest as different patterns of sleep dysfunction. METHODS: Overnight electroencephalography monitoring was performed on 48 subjects, including 15 amnestic, 19 atypical AD, and 14 controls. AD was defined based on neuropathological or biomarker confirmation. We compared sleep architecture by visual scoring and spectral power analysis in each group. RESULTS: Overall, AD cases showed increased sleep fragmentation and N1 sleep compared to controls. Compared to atypical AD groups, typical AD showed worse N3 sleep dysfunction and relatively preserved rapid eye movement (REM) sleep. DISCUSSION: Results suggest differing effects of amnestic and atypical AD variants on slow wave versus REM sleep, respectively, corroborating the hypothesis of differential selective vulnerability patterns of the subcortical nuclei within variants. Optimal symptomatic treatment for sleep dysfunction in clinical phenotypes may differ. HIGHLIGHTS: Alzheimer's disease (AD) variants show distinct patterns of sleep impairment. Amnestic/typical AD has worse N3 slow wave sleep (SWS) impairment compared to atypical AD. Atypical AD shows more rapid eye movement deficits than typical AD. Selective vulnerability patterns in subcortical areas may underlie sleep differences. Relatively preserved SWS may explain better memory scores in atypical versus typical AD.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Humanos , Doença de Alzheimer/patologia , Sono , Sono REM , Privação do Sono , Fenótipo
6.
Brain ; 143(8): 2545-2560, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32789455

RESUMO

Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.


Assuntos
Afasia Primária Progressiva/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Leitura , Idoso , Afasia Primária Progressiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade
7.
Alzheimers Dement ; 17(12): 2009-2019, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33884753

RESUMO

INTRODUCTION: Neurophysiological manifestations selectively associated with amyloid beta and tau depositions in Alzheimer's disease (AD) are useful network biomarkers to identify peptide specific pathological processes. The objective of this study was to validate the associations between reduced neuronal synchrony within alpha oscillations and neurofibrillary tangle (NFT) density in autopsy examination, in patients with AD. METHODS: In a well-characterized clinicopathological cohort of AD patients (n = 13), we quantified neuronal synchrony within alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillations, using magnetoencephalography during the disease course, within six selected neocortical and hippocampal regions, including angular gyrus, superior temporal gurus, middle frontal gyrus, primary motor cortex, CA1, and subiculum, and correlated these with regional NFT density quantified at histopathological examination. RESULTS: Abnormal synchrony in alpha, but not in delta-theta, significantly predicted the NFT density at post mortem neuropathological examination. DISCUSSION: Reduced alpha synchrony is a sensitive neurophysiological index associated with pathological tau, and a potential network biomarker for clinical trials, to gauge the extent of network dysfunction and the degree of rescue in treatments targeting tau pathways in AD.


Assuntos
Doença de Alzheimer/patologia , Autopsia , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Neuropatologia , Idoso , Atrofia/patologia , Estudos de Coortes , Feminino , Hipocampo/patologia , Humanos , Magnetoencefalografia , Masculino , Lobo Parietal , Lobo Temporal
8.
Hum Brain Mapp ; 41(10): 2846-2861, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243040

RESUMO

This study examined global resting-state functional connectivity of neural oscillations in individuals with chronic tinnitus and normal and impaired hearing. We tested the hypothesis that distinct neural oscillatory networks are engaged in tinnitus with and without hearing loss. In both tinnitus groups, with and without hearing loss, we identified multiple frequency band-dependent regions of increased and decreased global functional connectivity. We also found that the auditory domain of tinnitus severity, assayed by the Tinnitus Functional Index, was associated with global functional connectivity in both auditory and nonauditory regions. These findings provide candidate biomarkers to target and monitor treatments for tinnitus with and without hearing loss.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Perda Auditiva/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Zumbido/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Perda Auditiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Índice de Gravidade de Doença , Zumbido/diagnóstico por imagem , Adulto Jovem
9.
J Acoust Soc Am ; 148(6): 3682, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33379892

RESUMO

A hallmark feature of speech motor control is its ability to learn to anticipate and compensate for persistent feedback alterations, a process referred to as sensorimotor adaptation. Because this process involves adjusting articulation to counter the perceived effects of altering acoustic feedback, there are a number of factors that affect it, including the complex relationship between acoustics and articulation and non-uniformities of speech perception. As a consequence, sensorimotor adaptation is hypothesised to vary as a function of the direction of the applied auditory feedback alteration in vowel formant space. This hypothesis was tested in two experiments where auditory feedback was altered in real time, shifting the frequency values of the first and second formants (F1 and F2) of participants' speech. Shifts were designed on a subject-by-subject basis and sensorimotor adaptation was quantified with respect to the direction of applied shift, normalised for individual speakers. Adaptation was indeed found to depend on the direction of the applied shift in vowel formant space, independent of shift magnitude. These findings have implications for models of sensorimotor adaptation of speech.


Assuntos
Percepção da Fala , Fala , Retroalimentação , Retroalimentação Sensorial , Humanos , Acústica da Fala
10.
Brain ; 140(10): 2737-2751, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969381

RESUMO

Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.


Assuntos
Afasia Primária Progressiva/patologia , Mapeamento Encefálico , Encéfalo/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Afasia Primária Progressiva/classificação , Afasia Primária Progressiva/diagnóstico por imagem , Atrofia/etiologia , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ondas Encefálicas/fisiologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Feminino , Lateralidade Funcional , Substância Cinzenta/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC
11.
Ann Neurol ; 80(6): 858-870, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696483

RESUMO

OBJECTIVE: Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS: We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS: Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION: Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.


Assuntos
Doença de Alzheimer/epidemiologia , Convulsões/epidemiologia , California/epidemiologia , Estudos de Casos e Controles , Comorbidade , Eletroencefalografia , Feminino , Humanos , Incidência , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Sintomas Prodrômicos , Estudos Prospectivos
12.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38559176

RESUMO

INTRODUCTION: The interaction of amyloid and tau in neurodegenerative diseases is a central feature of AD pathophysiology. While experimental studies point to various interaction mechanisms, their causal direction and mode (local, remote or network-mediated) remain unknown in human subjects. The aim of this study was to compare mathematical reaction-diffusion models encoding distinct cross-species couplings to identify which interactions were key to model success. METHODS: We tested competing mathematical models of network spread, aggregation, and amyloid-tau interactions on publicly available data from ADNI. RESULTS: Although network spread models captured the spatiotemporal evolution of tau and amyloid in human subjects, the model including a one-way amyloid-to-tau aggregation interaction performed best. DISCUSSION: This mathematical exposition of the "pas de deux" of co-evolving proteins provides quantitative, whole-brain support to the concept of amyloid-facilitated-tauopathy rather than the classic amyloid-cascade or pure-tau hypotheses, and helps explain certain known but poorly understood aspects of AD.

13.
Front Hum Neurosci ; 18: 1424920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234407

RESUMO

Past studies have explored formant centering, a corrective behavior of convergence over the duration of an utterance toward the formants of a putative target vowel. In this study, we establish the existence of a similar centering phenomenon for pitch in healthy elderly controls and examine how such corrective behavior is altered in Alzheimer's Disease (AD). We found the pitch centering response in healthy elderly was similar when correcting pitch errors below and above the target (median) pitch. In contrast, patients with AD showed an asymmetry with a larger correction for the pitch errors below the target phonation than above the target phonation. These findings indicate that pitch centering is a robust compensation behavior in human speech. Our findings also explore the potential impacts on pitch centering from neurodegenerative processes impacting speech in AD.

14.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37293044

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

15.
Alzheimers Res Ther ; 16(1): 62, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504361

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS: SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS: Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS: These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição
16.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546337

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides , Proteínas tau , Benchmarking , Encéfalo
17.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352614

RESUMO

Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.

18.
Brain Commun ; 6(2): fcae121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665964

RESUMO

While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.

19.
Ann Clin Transl Neurol ; 11(2): 525-535, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226843

RESUMO

INTRODUCTION: Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are the most common four-repeat tauopathies (4RT), and both frequently occur with varying degree of Alzheimer's disease (AD) copathology. Intriguingly, patients with 4RT and patients with AD are at opposite ends of the wakefulness spectrum-AD showing reduced wakefulness and excessive sleepiness whereas 4RT showing decreased homeostatic sleep. The neural mechanisms underlying these distinct phenotypes in the comorbid condition of 4RT and AD are unknown. The objective of the current study was to define the alpha oscillatory spectrum, which is prominent in the awake resting-state in the human brain, in patients with primary 4RT, and how it is modified in comorbid AD-pathology. METHOD: In an autopsy-confirmed case series of 4R-tauopathy patients (n = 10), whose primary neuropathological diagnosis was either PSP (n = 7) or CBD (n = 3), using high spatiotemporal resolution magnetoencephalography (MEG), we quantified the spectral power density within alpha-band (8-12 Hz) and examined how this pattern was modified in increasing AD-copathology. For each patient, their regional alpha power was compared to an age-matched normative control cohort (n = 35). RESULT: Patients with 4RT showed increased alpha power but in the presence of AD-copathology alpha power was reduced. CONCLUSIONS: Alpha power increase in PSP-tauopathy and reduction in the presence of AD-tauopathy is consistent with the observation that neurons activating wakefulness-promoting systems are preserved in PSP but degenerated in AD. These results highlight the selectively vulnerable impacts in 4RT versus AD-tauopathy that may have translational significance on disease-modifying therapies for specific proteinopathies.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Paralisia Supranuclear Progressiva/diagnóstico , Encéfalo/patologia
20.
J Alzheimers Dis ; 92(1): 13-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710680

RESUMO

Cortical network hyperexcitability related to synaptic dysfunction in Alzheimer's disease (AD) is a potential target for therapeutic intervention. In recent years, there has been increased interest in the prevalence of silent seizures and interictal epileptiform discharges (IEDs, or seizure tendency), with both entities collectively termed "subclinical epileptiform activity" (SEA), on neurophysiologic studies in AD patients. SEA has been demonstrated to be common in AD, with prevalence estimates ranging between 22-54%. Converging lines of basic and clinical evidence imply that modifying a hyperexcitable state results in an improvement in cognition. In particular, though these results require further confirmation, post-hoc findings from a recent phase II clinical trial suggest a therapeutic effect with levetiracetam administration in patients with AD and IEDs. Here, we review key unanswered questions as well as potential clinical trial avenues. Specifically, we discuss postulated mechanisms and treatment of hyperexcitability in patients with AD, which are of interest in designing future disease-modifying therapies. Criteria to prompt screening and optimal screening methodology for hyperexcitability have yet to be defined, as does timing and personalization of therapeutic intervention.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/complicações , Relevância Clínica , Convulsões/etiologia , Levetiracetam/uso terapêutico , Causalidade , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa