Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447769

RESUMO

Most data nowadays are stored in the cloud; therefore, cloud computing and its extension-fog computing-are the most in-demand services at the present time. Cloud and fog computing platforms are largely used by Internet of Things (IoT) applications where various mobile devices, end users, PCs, and smart objects are connected to each other via the internet. IoT applications are common in several application areas, such as healthcare, smart cities, industries, logistics, agriculture, and many more. Due to this, there is an increasing need for new security and privacy techniques, with attribute-based encryption (ABE) being the most effective among them. ABE provides fine-grained access control, enables secure storage of data on unreliable storage, and is flexible enough to be used in different systems. In this paper, we survey ABE schemes, their features, methodologies, benefits/drawbacks, attacks on ABE, and how ABE can be used with IoT and its applications. This survey reviews ABE models suitable for IoT platforms, taking into account the desired features and characteristics. We also discuss various performance indicators used for ABE and how they affect efficiency. Furthermore, some selected schemes are analyzed through simulation to compare their efficiency in terms of different performance indicators. As a result, we find that some schemes simultaneously perform well in one or two performance indicators, whereas none shines in all of them at once. The work will help researchers identify the characteristics of different ABE schemes quickly and recognize whether they are suitable for specific IoT applications. Future work that may be helpful for ABE is also discussed.


Assuntos
Segurança Computacional , Internet das Coisas , Privacidade , Computação em Nuvem , Atenção à Saúde
2.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631793

RESUMO

Predicting attacks in Android malware devices using machine learning for recommender systems-based IoT can be a challenging task. However, it is possible to use various machine-learning techniques to achieve this goal. An internet-based framework is used to predict and recommend Android malware on IoT devices. As the prevalence of Android devices grows, the malware creates new viruses on a regular basis, posing a threat to the central system's security and the privacy of the users. The suggested system uses static analysis to predict the malware in Android apps used by consumer devices. The training of the presented system is used to predict and recommend malicious devices to block them from transmitting the data to the cloud server. By taking into account various machine-learning methods, feature selection is performed and the K-Nearest Neighbor (KNN) machine-learning model is proposed. Testing was carried out on more than 10,000 Android applications to check malicious nodes and recommend that the cloud server block them. The developed model contemplated all four machine-learning algorithms in parallel, i.e., naive Bayes, decision tree, support vector machine, and the K-Nearest Neighbor approach and static analysis as a feature subset selection algorithm, and it achieved the highest prediction rate of 93% to predict the malware in real-world applications of consumer devices to minimize the utilization of energy. The experimental results show that KNN achieves 93%, 95%, 90%, and 92% accuracy, precision, recall and f1 measures, respectively.

3.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837162

RESUMO

The comparison of low-rank-based learning models for multi-label categorization of attacks for intrusion detection datasets is presented in this work. In particular, we investigate the performance of three low-rank-based machine learning (LR-SVM) and deep learning models (LR-CNN), (LR-CNN-MLP) for classifying intrusion detection data: Low Rank Representation (LRR) and Non-negative Low Rank Representation (NLR). We also look into how these models' performance is affected by hyperparameter tweaking by using Guassian Bayes Optimization. The tests has been run on merging two intrusion detection datasets that are available to the public such as BoT-IoT and UNSW- NB15 and assess the models' performance in terms of key evaluation criteria, including precision, recall, F1 score, and accuracy. Nevertheless, all three models perform noticeably better after hyperparameter modification. The selection of low-rank-based learning models and the significance of the hyperparameter tuning log for multi-label classification of intrusion detection data have been discussed in this work. A hybrid security dataset is used with low rank factorization in addition to SVM, CNN and CNN-MLP. The desired multilabel results have been obtained by considering binary and multi-class attack classification as well. Low rank CNN-MLP achieved suitable results in multilabel classification of attacks. Also, a Gaussian-based Bayesian optimization algorithm is used with CNN-MLP for hyperparametric tuning and the desired results have been achieved using c and γ for SVM and α and ß for CNN and CNN-MLP on a hybrid dataset. The results show the label UDP is shared among analysis, DoS and shellcode. The accuracy of classifying UDP among three classes is 98.54%.

4.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960536

RESUMO

Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) have emerged as transforming technologies, bringing the potential to revolutionize a wide range of industries such as environmental monitoring, agriculture, manufacturing, smart health, home automation, wildlife monitoring, and surveillance. Population expansion, changes in the climate, and resource constraints all offer problems to modern IoT applications. To solve these issues, the integration of Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) has come forth as a game-changing solution. For example, in agricultural environment, IoT-based WSN has been utilized to monitor yield conditions and automate agriculture precision through different sensors. These sensors are used in agriculture environments to boost productivity through intelligent agricultural decisions and to collect data on crop health, soil moisture, temperature monitoring, and irrigation. However, sensors have finite and non-rechargeable batteries, and memory capabilities, which might have a negative impact on network performance. When a network is distributed over a vast area, the performance of WSN-assisted IoT suffers. As a result, building a stable and energy-efficient routing infrastructure is quite challenging in order to extend network lifetime. To address energy-related issues in scalable WSN-IoT environments for future IoT applications, this research proposes EEDC: An Energy Efficient Data Communication scheme by utilizing "Region based Hierarchical Clustering for Efficient Routing (RHCER)"-a multi-tier clustering framework for energy-aware routing decisions. The sensors deployed for IoT application data collection acquire important data and select cluster heads based on a multi-criteria decision function. Further, to ensure efficient long-distance communication along with even load distribution across all network nodes, a subdivision technique was employed in each tier of the proposed framework. The proposed routing protocol aims to provide network load balancing and convert communicating over long distances into shortened multi-hop distance communications, hence enhancing network lifetime.The performance of EEDC is compared to that of some existing energy-efficient protocols for various parameters. The simulation results show that the suggested methodology reduces energy usage by almost 31% in sensor nodes and provides almost 38% improved packet drop ratio.

5.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37448038

RESUMO

By definition, the aggregating methodology ensures that transmitted data remain visible in clear text in the aggregated units or nodes. Data transmission without encryption is vulnerable to security issues such as data confidentiality, integrity, authentication and attacks by adversaries. On the other hand, encryption at each hop requires extra computation for decrypting, aggregating, and then re-encrypting the data, which results in increased complexity, not only in terms of computation but also due to the required sharing of keys. Sharing the same key across various nodes makes the security more vulnerable. An alternative solution to secure the aggregation process is to provide an end-to-end security protocol, wherein intermediary nodes combine the data without decoding the acquired data. As a consequence, the intermediary aggregating nodes do not have to maintain confidential key values, enabling end-to-end security across sensor devices and base stations. This research presents End-to-End Homomorphic Encryption (EEHE)-based safe and secure data gathering in IoT-based Wireless Sensor Networks (WSNs), whereby it protects end-to-end security and enables the use of aggregator functions such as COUNT, SUM and AVERAGE upon encrypted messages. Such an approach could also employ message authentication codes (MAC) to validate data integrity throughout data aggregation and transmission activities, allowing fraudulent content to also be identified as soon as feasible. Additionally, if data are communicated across a WSN, then there is a higher likelihood of a wormhole attack within the data aggregation process. The proposed solution also ensures the early detection of wormhole attacks during data aggregation.


Assuntos
Segurança Computacional , Agregação de Dados , Redes de Comunicação de Computadores , Algoritmos , Confidencialidade
6.
Sensors (Basel) ; 22(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632142

RESUMO

Blockchain technology is gaining a lot of attention in various fields, such as intellectual property, finance, smart agriculture, etc. The security features of blockchain have been widely used, integrated with artificial intelligence, Internet of Things (IoT), software defined networks (SDN), etc. The consensus mechanism of blockchain is its core and ultimately affects the performance of the blockchain. In the past few years, many consensus algorithms, such as proof of work (PoW), ripple, proof of stake (PoS), practical byzantine fault tolerance (PBFT), etc., have been designed to improve the performance of the blockchain. However, the high energy requirement, memory utilization, and processing time do not match with our actual desires. This paper proposes the consensus approach on the basis of PoW, where a single miner is selected for mining the task. The mining task is offloaded to the edge networking. The miner is selected on the basis of the digitization of the specifications of the respective machines. The proposed model makes the consensus approach more energy efficient, utilizes less memory, and less processing time. The improvement in energy consumption is approximately 21% and memory utilization is 24%. Efficiency in the block generation rate at the fixed time intervals of 20 min, 40 min, and 60 min was observed.

7.
Sensors (Basel) ; 22(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746411

RESUMO

New technologies and trends in industries have opened up ways for distributed establishment of Cyber-Physical Systems (CPSs) for smart industries. CPSs are largely based upon Internet of Things (IoT) because of data storage on cloud servers which poses many constraints due to the heterogeneous nature of devices involved in communication. Among other challenges, security is the most daunting challenge that contributes, at least in part, to the impeded momentum of the CPS realization. Designers assume that CPSs are themselves protected as they cannot be accessed from external networks. However, these days, CPSs have combined parts of the cyber world and also the physical layer. Therefore, cyber security problems are large for commercial CPSs because the systems move with one another and conjointly with physical surroundings, i.e., Complex Industrial Applications (CIA). Therefore, in this paper, a novel data security algorithm Dynamic Hybrid Secured Encryption Technique (DHSE) is proposed based on the hybrid encryption scheme of Advanced Encryption Standard (AES), Identity-Based Encryption (IBE) and Attribute-Based Encryption (ABE). The proposed algorithm divides the data into three categories, i.e., less sensitive, mid-sensitive and high sensitive. The data is distributed by forming the named-data packets (NDPs) via labelling the names. One can choose the number of rounds depending on the actual size of a key; it is necessary to perform a minimum of 10 rounds for 128-bit keys in DHSE. The average encryption time taken by AES (Advanced Encryption Standard), IBE (Identity-based encryption) and ABE (Attribute-Based Encryption) is 3.25 ms, 2.18 ms and 2.39 ms, respectively. Whereas the average time taken by the DHSE encryption algorithm is 2.07 ms which is very much less when compared to other algorithms. Similarly, the average decryption times taken by AES, IBE and ABE are 1.77 ms, 1.09 ms and 1.20 ms and the average times taken by the DHSE decryption algorithms are 1.07 ms, which is very much less when compared to other algorithms. The analysis shows that the framework is well designed and provides confidentiality of data with minimum encryption and decryption time. Therefore, the proposed approach is well suited for CPS-IoT.


Assuntos
Computação em Nuvem , Internet das Coisas , Segurança Computacional , Confidencialidade , Armazenamento e Recuperação da Informação
8.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015869

RESUMO

Wireless sensor networks (WSNs) have recently been viewed as the basic architecture that prepared the way for the Internet of Things (IoT) to arise. Nevertheless, when WSNs are linked with the IoT, a difficult issue arises due to excessive energy utilization in their nodes and short network longevity. As a result, energy constraints in sensor nodes, sensor data sharing and routing protocols are the fundamental topics in WSN. This research presents an enhanced smart-energy-efficient routing protocol (ESEERP) technique that extends the lifetime of the network and improves its connection to meet the aforementioned deficiencies. It selects the Cluster Head (CH) depending on an efficient optimization method derived from several purposes. It aids in the reduction of sleepy sensor nodes and decreases energy utilization. A Sail Fish Optimizer (SFO) is used to find an appropriate route to the sink node for data transfer following CH selection. Regarding energy utilization, bandwidth, packet delivery ratio and network longevity, the proposed methodology is mathematically studied, and the results have been compared to identical current approaches such as a Genetic algorithm (GA), Ant Lion optimization (ALO) and Particle Swarm Optimization (PSO). The simulation shows that in the proposed approach for the longevity of the network, there are 3500 rounds; energy utilization achieves a maximum of 0.5 Joules; bandwidth transmits the data at the rate of 0.52 MBPS; the packet delivery ratio (PDR) is at the rate of 96% for 500 nodes, respectively.


Assuntos
Redes de Comunicação de Computadores , Internet das Coisas , Algoritmos , Animais , Conservação de Recursos Energéticos , Tecnologia sem Fio
9.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808508

RESUMO

Cloud providers create a vendor-locked-in environment by offering proprietary and non-standard APIs, resulting in a lack of interoperability and portability among clouds. To overcome this deterrent, solutions must be developed to exploit multiple clouds efficaciously. This paper proposes a middleware platform to mitigate the application portability issue among clouds. A literature review is also conducted to analyze the solutions for application portability. The middleware allows an application to be ported on various platform-as-a-service (PaaS) clouds and supports deploying different services of an application on disparate clouds. The efficiency of the abstraction layer is validated by experimentation on an application that uses the message queue, Binary Large Objects (BLOB), email, and short message service (SMS) services of various clouds via the proposed middleware against the same application using these services via their native code. The experimental results show that adding this middleware mildly affects the latency, but it dramatically reduces the developer's overhead of implementing each service for different clouds to make it portable.


Assuntos
Software
10.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640666

RESUMO

The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier-Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 × 32 × 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques.


Assuntos
Aprendizado Profundo , Atenção à Saúde , Humanos , Redes Neurais de Computação
11.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640792

RESUMO

The advancements in Industry 4.0 have opened up new ways for the structural deployment of Smart Grids (SGs) to face the endlessly rising challenges of the 21st century. SGs for Industry 4.0 can be better managed by optimized routing techniques. In Mobile Ad hoc Networks (MANETs), the topology is not fixed and can be encountered by interference, mobility of nodes, propagation of multi-paths, and path loss. To extenuate these concerns for SGs, in this paper, we have presented a new version of the standard Optimized Link State Routing (OLSR) protocol for SGs to improve the management of control intervals that enhance the efficiency of the standard OLSR protocol without affecting its reliability. The adapted fault tolerant approach makes the proposed protocol more reliable for industrial applications. The process of grouping of nodes supports managing the total network cost by reducing severe flooding and evaluating an optimized head of clusters. The head of the unit is nominated according to the first defined expectation factor. With a sequence of rigorous performance evaluations under simulation parameters, the simulation results show that the proposed version of OLSR has proliferated Quality of Service (QoS) metrics when it is compared against the state-of-the-art-based conventional protocols, namely, standard OLSR, DSDV, AOMDV and hybrid routing technique.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Simulação por Computador , Reprodutibilidade dos Testes
12.
Sensors (Basel) ; 21(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199559

RESUMO

Traditional pattern recognition approaches have gained a lot of popularity. However, these are largely dependent upon manual feature extraction, which makes the generalized model obscure. The sequences of accelerometer data recorded can be classified by specialized smartphones into well known movements that can be done with human activity recognition. With the high success and wide adaptation of deep learning approaches for the recognition of human activities, these techniques are widely used in wearable devices and smartphones to recognize the human activities. In this paper, convolutional layers are combined with long short-term memory (LSTM), along with the deep learning neural network for human activities recognition (HAR). The proposed model extracts the features in an automated way and categorizes them with some model attributes. In general, LSTM is alternative form of recurrent neural network (RNN) which is famous for temporal sequences' processing. In the proposed architecture, a dataset of UCI-HAR for Samsung Galaxy S2 is used for various human activities. The CNN classifier, which should be taken single, and LSTM models should be taken in series and take the feed data. For each input, the CNN model is applied, and each input image's output is transferred to the LSTM classifier as a time step. The number of filter maps for mapping of the various portions of image is the most important hyperparameter used. Transformation on the basis of observations takes place by using Gaussian standardization. CNN-LSTM, a proposed model, is an efficient and lightweight model that has shown high robustness and better activity detection capability than traditional algorithms by providing the accuracy of 97.89%.


Assuntos
Aprendizado Profundo , Algoritmos , Atividades Humanas , Humanos , Redes Neurais de Computação , Smartphone
13.
Sensors (Basel) ; 21(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450933

RESUMO

The substantial advancements offered by the edge computing has indicated serious evolutionary improvements for the internet of things (IoT) technology. The rigid design philosophy of the traditional network architecture limits its scope to meet future demands. However, information centric networking (ICN) is envisioned as a promising architecture to bridge the huge gaps and maintain IoT networks, mostly referred as ICN-IoT. The edge-enabled ICN-IoT architecture always demands efficient in-network caching techniques for supporting better user's quality of experience (QoE). In this paper, we propose an enhanced ICN-IoT content caching strategy by enabling artificial intelligence (AI)-based collaborative filtering within the edge cloud to support heterogeneous IoT architecture. This collaborative filtering-based content caching strategy would intelligently cache content on edge nodes for traffic management at cloud databases. The evaluations has been conducted to check the performance of the proposed strategy over various benchmark strategies, such as LCE, LCD, CL4M, and ProbCache. The analytical results demonstrate the better performance of our proposed strategy with average gain of 15% for cache hit ratio, 12% reduction in content retrieval delay, and 28% reduced average hop count in comparison to best considered LCD. We believe that the proposed strategy will contribute an effective solution to the related studies in this domain.

14.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445803

RESUMO

Various heterogeneous devices or objects will be integrated for transparent and seamless communication under the umbrella of Internet of things (IoT). This would facilitate the open access of data for the growth of various digital services. Building a general framework of IoT is a complex task because of the heterogeneity in devices, technologies, platforms and services operating in the same system. In this paper, we mainly focus on the framework for Big Data analytics in Smart City applications, which being a broad category specifies the different domains for each application. IoT is intended to support the vision of Smart City, where advance technologies will be used for communication to improve the quality of life of citizens. A novel approach is proposed in this paper to enhance energy conservation and reduce the delay in Big Data gathering at tiny sensor nodes used in IoT framework. To implement the Smart City scenario in terms of Big Data in IoT, an efficient (optimized in quality of service) wireless sensor network (WSN) is required where communication of nodes is energy efficient. Thus, a new protocol, QoS-IoT(quality of service enabled IoT), is proposed on the top layer of the proposed architecture (the five-layer architecture consists of technology, data source, data management, application and utility programs) which is validated over the traditional protocols.

15.
Sensors (Basel) ; 15(11): 28603-27, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569260

RESUMO

One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT.

16.
J Neurosci Methods ; 408: 110159, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723868

RESUMO

BACKGROUND: In order to push the frontiers of brain-computer interface (BCI) and neuron-electronics, this research presents a novel framework that combines cutting-edge technologies for improved brain-related diagnostics in smart healthcare. This research offers a ground-breaking application of transparent strategies to BCI, promoting openness and confidence in brain-computer interactions and taking inspiration from Grad-CAM (Gradient-weighted Class Activation Mapping) based Explainable Artificial Intelligence (XAI) methodology. The landscape of healthcare diagnostics is about to be redefined by the integration of various technologies, especially when it comes to illnesses related to the brain. NEW METHOD: A novel approach has been proposed in this study comprising of Xception architecture which is trained on imagenet database following transfer learning process for extraction of significant features from magnetic resonance imaging dataset acquired from publicly available distinct sources as an input and linear support vector machine has been used for distinguishing distinct classes.Afterwards, gradient-weighted class activation mapping has been deployed as the foundation for explainable artificial intelligence (XAI) for generating informative heatmaps, representing spatial localization of features which were focused to achieve model's predictions. RESULTS: Thus, the proposed model not only provides accurate outcomes but also provides transparency for the predictions generated by the Xception network to diagnose presence of abnormal tissues and avoids overfitting issues. Hyperparameters along with performance-metrics are also obtained while validating the proposed network on unseen brain MRI scans to ensure effectiveness of the proposed network. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The integration of Grad-CAM based explainable artificial intelligence with deep neural network namely Xception offers a significant impact in diagnosing brain tumor disease while highlighting the specific regions of input brain MRI images responsible for making predictions. In this study, the proposed network results in 98.92% accuracy, 98.15% precision, 99.09% sensitivity, 98.18% specificity and 98.91% dice-coefficient while identifying presence of abnormal tissues in the brain. Thus, Xception model trained on distinct dataset following transfer learning process offers remarkable diagnostic accuracy and linear support vector act as a classifier to provide efficient classification among distinct classes. In addition, the deployed explainable artificial intelligence approach helps in revealing the reasoning behind predictions made by deep neural network having black-box nature and provides a clear perspective to assist medical experts in achieving trustworthiness and transparency while diagnosing brain tumor disease in the smart healthcare.


Assuntos
Inteligência Artificial , Interfaces Cérebro-Computador , Encéfalo , Imageamento por Ressonância Magnética , Máquina de Vetores de Suporte , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Redes Neurais de Computação
17.
Sci Rep ; 14(1): 10898, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740843

RESUMO

Distributed denial-of-service (DDoS) attacks persistently proliferate, impacting individuals and Internet Service Providers (ISPs). Deep learning (DL) models are paving the way to address these challenges and the dynamic nature of potential threats. Traditional detection systems, relying on signature-based techniques, are susceptible to next-generation malware. Integrating DL approaches in cloud-edge/federated servers enhances the resilience of these systems. In the Internet of Things (IoT) and autonomous networks, DL, particularly federated learning, has gained prominence for attack detection. Unlike conventional models (centralized and localized DL), federated learning does not require access to users' private data for attack detection. This approach is gaining much interest in academia and industry due to its deployment on local and global cloud-edge models. Recent advancements in DL enable training a quality cloud-edge model across various users (collaborators) without exchanging personal information. Federated learning, emphasizing privacy preservation at the cloud-edge terminal, holds significant potential for facilitating privacy-aware learning among collaborators. This paper addresses: (1) The deployment of an optimized deep neural network for network traffic classification. (2) The coordination of federated server model parameters with training across devices in IoT domains. A federated flowchart is proposed for training and aggregating local model updates. (3) The generation of a global model at the cloud-edge terminal after multiple rounds between domains and servers. (4) Experimental validation on the BoT-IoT dataset demonstrates that the federated learning model can reliably detect attacks with efficient classification, privacy, and confidentiality. Additionally, it requires minimal memory space for storing training data, resulting in minimal network delay. Consequently, the proposed framework outperforms both centralized and localized DL models, achieving superior performance.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38829758

RESUMO

The Internet of Medical Things (IoMT) has transformed traditional healthcare systems by enabling real-time monitoring, remote diagnostics, and data-driven treatment. However, security and privacy remain significant concerns for IoMT adoption due to the sensitive nature of medical data. Therefore, we propose an integrated framework leveraging blockchain and explainable artificial intelligence (XAI) to enable secure, intelligent, and transparent management of IoMT data. First, the traceability and tamper-proof of blockchain are used to realize the secure transaction of IoMT data, transforming the secure transaction of IoMT data into a two-stage Stackelberg game. The dual-chain architecture is used to ensure the security and privacy protection of the transaction. The main-chain manages regular IoMT data transactions, while the side-chain deals with data trading activities aimed at resale. Simultaneously, the perceptual hash technology is used to realize data rights confirmation, which maximally protects the rights and interests of each participant in the transaction. Subsequently, medical time-series data is modeled using bidirectional simple recurrent units to detect anomalies and cyberthreats accurately while overcoming vanishing gradients. Lastly, an adversarial sample generation method based on local interpretable model-agnostic explanations is provided to evaluate, secure, and improve the anomaly detection model, as well as to make it more explainable and resilient to possible adversarial attacks. Simulation results are provided to illustrate the high performance of the integrated secure data management framework leveraging blockchain and XAI, compared with the benchmarks.

19.
ISA Trans ; 132: 52-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36154778

RESUMO

With changing times, the need for security increases in all fields, whether we talk about cloud networks or vehicular networks. In every place, it has its importance, but in vehicular networks where the lives of human beings are involved, security becomes the topmost priority. Therefore, this article aims to shed light on Misbehavior Detection Framework (MDF) used in the Cooperative Intelligent Transport Systems community. Here, MDF keeps an eye on malicious entities on the roads. It is done by regularly evaluating two main checks: consistency and local plausibility. These checks are done by Intelligent Transport System Stations. All the messages received through Vehicle-to-Everything are scrutinized through this model. After that, all the messages are evaluated by local detection mechanisms to decide the holistic message's plausibility. This article mainly focuses on the logic behind the proposed Misbehavior Detection Framework providing more security, evaluating various Machine Learning-based models to ensure one best out of all based on quality and computation latency of all models along with the results of various parameters, such as Recall, Precision, F1 Score, Accuracy, Bookmaker Informedness, Markedness, Mathews Correlation Coefficient, Kappa, and achieved the best results.

20.
Sci Rep ; 13(1): 3614, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869106

RESUMO

Vehicular Content Networks (VCNs) represent key empowering solution for content distribution in fully distributed manner for vehicular infotainment applications. In VCN, both on board unit (OBU) of each vehicle and road side units (RSUs) facilitate content caching to support timely content delivery for moving vehicles when requested. However, due to limited caching capacity available at both RSUs and OBUs, only selected content can be cached. Moreover, the contents being demanded in vehicular infotainment applications are transient in nature. The transient content caching in vehicular content networks with the use of edge communication for delay free services is fundamental issue and need to get addressed (Yang et al. in ICC 2022-IEEE international conference on communications. IEEE, pp 1-6, 2022). Therefore, this study focuses on edge communication in VCNs by firstly organizing a region based classification for vehicular network components including RSUs and OBUs. Secondly, a theoretical model is designed for each vehicle to decide its content fetching location (i.e. either RSU or OBU) in current region or neighboring region. Further, the caching of transient contents inside vehicular network components (such as RSU, OBU) is based on content caching probability. Finally, the proposed scheme is evaluated under different network condition in Icarus simulator for various performance parameters. The simulation results proved outstanding performance of the proposed approach over various state of art caching strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa