Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36675950

RESUMO

Nearly 35 million people worldwide live with Alzheimer's disease (AD). The prevalence of the disease is expected to rise two-fold by 2050. With only symptomatic treatment options available, it is essential to understand the developments and existing evidence that aims to target brain pathology and dementia outcomes. This scoping systematic review aimed to collate existing evidence of CT1812 for use in patients with AD and summarize the methodologies of ongoing trials. Adhering to PRISMA Statement 2020 guidelines, PubMed/MEDLINE, Embase, Cochrane, and ClinicalTrials.gov were systematically searched through up to 15 November 2022 by applying the following keywords: CT1812, Alzheimer's disease, dementia, and/or sigma-2 receptor. Three completed clinical trials were included along with three ongoing records of clinical trials. The three completed trials were in Phases I and II of testing. The sample size across all three trials was 135. CT1812 reached endpoints across the trials and obtained a maximum concentration in the cerebrospinal fluid with 97-98% receptor occupancy. The findings of this systematic review must be used with caution as the results, while mostly favorable so far, must be replicated in higher-powered, placebo-controlled Phase II-III trials.

2.
ACS Omega ; 6(1): 569-578, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458509

RESUMO

Extrusion-based bioprinting with a preprint cross-linking agent and an in situ cooling stage provides a versatile method for the fabrication of 3D structures for cell culture. We added varying amounts of calcium chloride as a precross-linker into native nanofibrillated cellulose (NFC) hydrogel prior to 3D bioprinting to fabricate structurally stable multilayered constructs without the need for a separate cross-linking bath. To further enhance their stability, we bioprinted the multilayered structures onto an in situ temperature-controlled printing stage at 25, 0, and -10 °C. The extruded and subsequently freeze-dried volumetric constructs maintained their structures after being immersed into a cell culture medium. The ability to maintain the shape after immersion in cell media is an essential feature for the fabrication of stem cell-based artificial organs. We studied the viability and distribution of mouse embryonic fibroblast cells into the hydrogels using luminescence technique and confocal microscopy. Adding CaCl2 increased the stability of the multilayered nanocellulose structures, making them suitable for culturing cells inside the 3D hydrogel environment. Lower stage temperature considerably improved the structural stability of the 3D printed structures, however, had no effect on cell viability.

3.
Carbohydr Polym ; 269: 118335, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294345

RESUMO

Recently, the hydrogel-forming polysaccharide gellan gum (GG) has gained popularity as a versatile biomaterial for tissue engineering purposes. Here, we examine the modification strategies suitable for GG to overcome processing-related limitations. We emphasize the thorough assessment of the viscoelastic and mechanical properties of both precursor solutions and final hydrogels. The investigated modification strategies include purification, oxidation, reductive chain scission, and blending. We correlate polymer flow and hydrogel forming capabilities to viscosity-dependent methods including casting, injection and printing. Native GG and purified NaGG are shear thinning and feasible for printing, being similar in gelation and compression behavior. Oxidized GGox possesses reduced viscosity, higher toughness, and aldehydes as functional groups, while scissored GGsciss has markedly lower molecular weight. To exemplify extrudability, select modification products are printed using an extrusion-based bioprinter utilizing a crosslinker bath. Our robust modification strategies have widened the processing capabilities of GG without affecting its ability to form hydrogels.


Assuntos
Polissacarídeos Bacterianos/química , Cloreto de Cálcio/química , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Peso Molecular , Oxirredução , Polissacarídeos Bacterianos/síntese química , Espermidina/química , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa